Bioinformatics I (KF) VU 041035 WS2024 http://icbi.at/mo

Hubert Hackl Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria Tel: +43-512-9003-71403, Email: hubert.hackl@i-med.ac.at URL: http://icbi.at

Contents

- I. Predictive methods on protein sequences (Protein domains, Signal P, NetMHCPan)
- II. Sequence alignment and databases (BLAST, NCBI, TCGA, Firebrowse, TCIA, GEO, IntOgen, cBioPortal)
- III. Differentially expressed genes (microarrays, RNAseq) (R/Bioconductor software packages, limma, DEseq2)
- IV. Expression profiling and clustering (Genesis)
- V. Gene ontology, Pathway analysis (DAVID, KEGG, Reactome, ConsensusPathDB, ClueGO, Enrichr)
- VI. Network analysis (Cytoscape)
- VII. Gene set enrichment analysis (GSEA), Deconvolution
- VIII. Predictive and prognostic marker (signatures) (logistic regression, survival analysis)

Nomenclature of nuclein acids

Base	Symbol	Occurrence
Adenin	A	DNA, RNA
Guanin	G	DNA, RNA
Cytosin	C	DNA, RNA
Thymin	T	DNA
Uracil	U	RNA
Symbol	Meaning	Description
R	A or G	puRine
Y	C or T	pYrimidine
W	A or T	Weak hydrogen bonds
S	G or C	Strong hydrogen bonds
M	A or C	aMino groups
K	G or T	Keto groups
H	A, C, or T (U)	not G, (H follows G)
B	G, C, or T (U)	not A, (B follows G)
V	G, A, or C	not T (U), (V follows U)
D	G, A, or T (U)	not C, (D follows C)
N	G, A, C or T (U)	aNy nucleotide

Nomenclature

DNA sequences are always from 5' to 3'

- + strand 5'-ACGGTCGCTGTCGGTAGC-3'
- strand 3⁻TGCCAGCGACAGCCATCG-5⁻

e.g. in fasta format :

>gene sequence|gi12345|chr17|-GCTACCGACAGCGACCGT

Positions in the genome (genome assembly) are chromosome wise

e.g. human GRCh37/hg19

chr11:1-100 chr11:49,686,777-49,689,777 (11p15.4 15.2 p15.1 p14.3 14.1 11p13 11p12 p11.2 q12.1 q12.1 q13.4 11q14.1 q14.3 11q21 q22.1 11q22.3 11q23.3 q24.2 24.3 q25

Positions in the chromosome start for **both!!** strands from position 1

Translation, genetic code and reading frames

Peptid chain, amino acid sequence, proteins

Protein sequences are always form N-terminal end to C-terminal end

E.g.. SCD sequence in fasta format

>gi|53759151|ref|NP_005054.3| acyl-CoA desaturase [Homo sapiens] MPAHLLQDDISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDDIRPDIKDDIYDPTYKDKEGPSPKVE YVWRNIILMSLLHLGALYGITLIPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLRLFLII ANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKL VMFQRRYYKPGLLMMCFILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNI SPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKR TGDGNYKSG

Protein Sequence Analysis

Shared ancestry? Similar function? Domain or complete sequence? Are functional sequences conserved?

Homology searches

Profile Analysis

Protein Sequence Analysis

Protein Sequence Analysis

Substitutions matrices

• Unrelated or random model assumes that letter a occurs independently with some frequency *qa*.

 $P(x,y|R) = \prod q_{xi} \prod q_{xj}$

• The alternative match model of aligned pairs of residues occurs with a joint probability *pab*.

$$P(x,y|M) = \prod p_{xiyi}$$

Odds ratio

$$\frac{P(x,y|M)}{P(x,y|R)} = \frac{\prod p_{xi yi}}{\prod q_{xi} \prod q_{yj}} \qquad \prod \frac{p_{xi yi}}{q_{xi} q_{yj}}$$

BLOSSUM62

D E G Н I L K М F Ρ Т W V B Ζ X * Α R N СО S Y 0 -2 -1 -1 -1 -1 -2 -1 0 -3 -2 -1 1 -2 -1 Α 4 -1 -2 -2 0 -1 0 0 - 42 -1 -3 -2 -1 -1 -3 -2 -3 -1 R -1 5 0 -2 -3 1 0 - 20 - 3 - 20 - 1 - 41 N - 20 6 1 - 30 0 0 1 - 3 - 30 -2 -3 -2 0 -4 -2 -3 3 0 - 1 - 4D -2 -2 6 - 3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 1 4 1 - 1 - 4С 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4 0 -1 0 - 35 2 - 20 - 3 - 21 0 - 3 - 10 -1 -2 -1 -21 0 0 3 -1 -4 5 -2 1 -2 -3 -1 0 -1 -3 -2 -2 E -1 2 - 42 0 -3 -3 0 0 4 -1 -4 1 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4 G 0 - 28 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 - 3 H - 2 = 01 -1 -3 0 0 - 20 0 - 1 - 42 - 3 T -1 -3 -3 -3 -1 -3 -3 -4 -3 4 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4 4 -2 2 2 0 -3 -2 -1 -2 -1 L -1 -2 -3 -4 -1 -2 -3 -4 -3 1 -4 -3 -1 -4 -2 -1 -3 -2 5 -1 -3 -1 K -1 2 0 - 1 - 31 1 0 -1 -3 -2 -20 1 - 1 - 42 - 1M -1 -1 -2 -3 -1 0 - 2 - 3 - 21 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4 F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4 0 S 1 -1 1 0 - 10 0 0 -1 -2 -2 -1 -2 -1 4 1 - 3 - 2 - 20 0 0 - 4Т 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 - 2 - 20 -1 -1 0 - 4W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4 2 -1 -1 -2 -1 3 -3 -2 -2 Y -2 -2 -2 -3 -2 -1 -2 -3 2 7 -1 -3 -2 -1 -4 1 -2 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4 V 0 B -2 -1 3 4 - 3 0 1 -1 0 - 3 - 4-3 -3 -20 -1 -4 -3 -3 4 1 - 1 - 44 -2 0 -1 -3 -2 -2 Z -1 1 - 33 0 -3 -3 1 -1 -3 -1 -1 -4 0 0 1 4 0 0 -2 -1 -1 -1 -1 -1 -4 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 Х -4 -4 -4 - 1

Database search

Database:
 AIKWQPRSTW...
 IKMQRHIKW...
 HDLFWHLWH...

........

- Query:
 RGIKW
- Output: sequences *similar* to query

High-scoring segment pairs

query word (W = 3) Query: GSVEDTTGSQSLAALLNKCKTP0GQRLVNQWIKQPLMDKNRIEERLNLVEAFVEDAELRQTLQEDL PQG 18 PEG 15 PRG 14 neighborhood PKG 14 PNG 13 words 13 PDG 13 PHG neighborhood PMG 13 PSG 13 score threshold 12 PQA (T = 13)PON 12 etc... Х 325 SLAALLNKCKTPQGQRLVNQUIKQPLMDKNRIEERLNLVEA Query: 365 TP G R++ +U+ P+ D + A +LA++L+ + ER Sbjct: 290 TLASVLDCTVTPMGSRMLKRWLHMPVRDTRVLLERQQTIGA 330 High-scoring Segment Pair (HSP)

Significance of scores

The number of unrelated matches with score greater than S is approximately Poisson distributed with mean

 $E(S)=Kmne^{-\lambda S}$

where λ is a scaling factor m and n are the length of the sequences

The probability that there is a match of score greater than S follows a extreme value distribution:

Karlin S, Altschul S. Proc Natl Acad Sci (1990)

NCBI Blast

Program	Query sequence	Subject sequence
BLASTN	Nucleotide	Nucleotide
BLASTP	Protein	Protein
BLASTX	Nucleotide six-frame translation	Protein
TBLASTN	Protein	Nucleotide six-frame translation
TBLASTX	Nucleotide six-frame translation	Nucleotide six-frame translation

NCBI Blast Example

<u>blastn</u>	blastp	<u>blastx</u>	<u>tblastn</u>	tblastx													
	Enter Quent Sequences BLASTP programs search protein databases using a protein query. <u>more</u>																
	Enter Query Sequence																
Ent	Enter accession number(s), gi(s), or FASTA sequence(s) (a) Clear Query subrange (a)																
>g: mit	<pre>>g1[106049295]ref[NP_000911.2] pyruvate carboxylase, mitochondrial precursor [Homo sapiens]</pre>																
MLKFRTVHGGLRLLGIRRTSTAPAASPNVRRLEYKPIKKVMVANRGEIAIRVFRACTELGI																	
DTO	DTGQMHRQKADEAYLIGRGLAPVQAYLHIPDIIKVAKENNVDAVHPGYGFLSERADFAQAC																
						tranca di											
Or,	ирюаа пі	e	Durchsuc	chen Ke	eine Datei ausgewählt.	Θ											
Job	Title		gi 1060492	95 ref NP_(000911.2 pyruvate carbo	xylase,											
		E	Enter a des	criptive title f	for your BLAST search 🌀	D			Reference	dant protein sequences (nr)							
	lign two	or more s	equence	s 🕑					UniProtKB/	/Swiss-F	Swiss-Prot(swissprot)						
- 0	hoose S	earch S	ot						Patented p Protein Dat	rotein s ta Bank	otein sequences(pat) Bank proteins(pdb)						
Dat	ahaso								Metagenor	mic prot	eins(env_n	r)					
Dat	anase	+	Reference	e proteins ((refseq_protein)	-	9		Transcripto	ome Sho	otgun Asse	mbly proteins (tsa_nr)					
Org	anism		Mus musc	ulue (tavid	-10090)				volude +								
Opt	Optional Foregraphic common name, binomial, or tax id, Only 20 top taxa will be shown @						. @	Algorithm parameters									
Evo	ludo	1	Medele		Upoultured/environmen	tal comple o				Ge	eneral Param	eters					
Opt	onal		Information in the second seco		Oncultured/environmen	tai sampie s	equences	>		Max	target	100 🔻					
Ent	rez Query							You Tube 🤇	Create custom o	36qu	ences	Select the maximum number of aligne					
Opt	onai	E	inter an En	trez query to) limit search 🥹					Shor	t queries	Automatically adjust parameters					
		N - 1 4 ⁰								Expe	ect threshold	10					
P	rogram s	selection	1							Word	d size	3 🔻 🔞					
Alg	orithm	0) blastp (protein-prot	ein BLAST)					Max	matches in a						
		0	D PSI-BLA	AST (Positi	on-Specific Iterated BLA	AST)				quer	y range	0					
	© PHI-BLAST (Pattern Hit Initiated BLAST)						Sc	oring Parame	eters								
		0	DELTA-	BLAST (Do	main Enhanced Lookup	Time Accel	erated Bl	LAST)		Matri	ix	BLOSUM62 - @					
		0	Choose a E	LAST algor	ithm 🥹												
	a o rith m	a concernant	0.00							Gap	Costs	Existence: 11 Extension: 1 👻 🧕					
(†) Al	<u>jonuin j</u>		ers							Com adju	positional stments	Conditional compositional score r					

Blast Results

Best hit

Multiple sequence alignment (Clustal W)

Hbb_Human -Hbb_Horse .17 -Hba_Human .59 .60 -Hba_Horse .59 .59 .13 -Myg_Whale .77 .77 .75 .75 -

Pairwise alignment calculate distance matrix

Rooted neighbor-joining tree (guide tree) and sequence weights

Profile Construction

PSSM(p,a) =
$$\sum_{b=1}^{20} f(p,b)*s(a,b)$$

f(p,b) = frequency of amino acid b in position p s(a,b) is the score of (a,b) (from, e.g., BLOSUM or PAM)

Profile Hidden Markov Model

- For multiple alignments (e.g. DNA sequences)

 $\log - 0.047/0.25^{L} = \log(0.047/0.25^{7})$

Neuronal network for secondary structure prediction

PredictProtein

- Multi-step predictive algorithm (Rost et al., 1994)
 - Protein sequence queried against SWISS-PROT
 MaxHom used to generate iterative, profile-based
 Multiple sequence alignment (Sander and Schneider, 1991)
 - Multiple alignment fed into neural network (PHDsec)
- Accuracy: Average > 70%, Best-case > 90%
- http://www.predictprotein.org/

Prediction of protein function

Flexible regions

no inherent structure, bias to small/polar AA

Compositional bias CAST, DisEMBL, GlobPlot SAPS, SEG, XNU Targeting signals and PTMs Big-_ MyPS/NMT, PrePS PTS1 SignalP, Sigcleave

Fibrillar domains

native 2D structure, monotonous hydrophobic pattern

IMP-coil (after Lupas et al.), Predator

Membrane

regions

native 2D structure,

hydrophobic bias

DAS-TMfilter TMHMM Phobius HMMTOP SAPS, Toppred

about 30 analytic methods with several parameter sets
output (1-100 MB ASCII text)

Globular domains

native tertiary structure

PFAM SMART PROSITE L. Aravind's library Y. Wolf's library M. Andrade's repeat library IMP library

BLAST/PSI-BLAST RPS-Blast IMPALA

Symbian gi[4503431]ref[NP_003485.1] dysferlin [Homo sapiens] Description 2160 200 Other compositional features 2.4 10.04 Membrane-embedded regions Secondary structural features 1579 - 1678 Model: C2 E-Value: 2.18-14 gainst Sr (2007-11-20) Small sequence motifilitary

Annotator

Frank Eisenhaber et al.

SignalP

- Neural network trained based on phylogeny
 - Gram-negative prokaryotic
 - Gram-positive prokaryotic
 - Eukaryotic
- Predicts secretory signal peptides
- http://www.cbs.dtu.dk/services/SignalP/

Insulin

4. Disulfide bonds form

5. C-peptide is cleaved

6. Formation of the mature insulin molecule

- 2. Membrane transport
- 3. Cleavege of signal peptide

Proinsulin

Difference between pig and human insulin = 1AA

A-kinase anchoring proteins (AKAPs) binding to the regulatory subunit of protein kinase A (PKA)

PKA-RII 1 AKAP1 (341-353) - Q92667 2 AKAP2/KL (563-586) - Q9Y2D5 3 AKAP3/AKAP110/FSP95 (121-144) - 075969 4 AKAP4/AKAP82/FSC1 (214-237) - Q5JQC9 5 AKAP5/AKAP79 (389-412) - P24588 6 AKAP7/AKAP15/AKAP18 (293-316) - Q9P0M2 7 AKAP8/AKAP95 (567-590) - O43823 8 AKAP10/dAKAP2 (628-651) - O43572 9 AKAP11/AKAP220 (1644-1667) - Q9UKA4 10 AKAP12/AKAP250/GRAVIN (1539-1562) - Q02952 11 AKAP14/AKAP28 (37-60) - Q86UN6 12 AKAP17A (366-389) - Q02040 13 BIG2 (278-301) - Q9Y6D5 14 Chromodomain-helicase-DNA-Binding (454-477) - Q9HCK8 15 EZRIN (412-435) - P15311 16 GSKIP (30-53) - Q9P0R6 17 MAP2 (88-111) - P11137 18 Moesin (412-435) - P26038 19 MTG16B (398-421) - 075081 20 MyRIP (187-210) - Q8NFW9 21 Myosprin (3629-3652) - Q8N3K9 22 Neurobeachin (1092-1103) - Q8NFP9 23 RAB32 (181-192) - Q13637 24 Synemin (638-649) - O15061 25 WAVE1 (497-508) - Q92558 26 AKAP-IS 27 SUPER-AKAP-IS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Е	Ε	Т	к	R	Α	А	F	Q	Т	Т	S	Q	V	Т	s	Е	Α	т	Е	Q	v	L	Α
D	Ρ	L	E	γ	Q	Α	G	L	L	v	Q	Ν	А		Q	Q	Α	1	Α	Е	Q	v	D
D	Е	v	s	F	γ	Α	Ν	R	L	т	Ν	L	v	1	Α	м	Α	R	к	Е		Ν	Е
D	D	L	s	F	Y	v	Ν	R	L	s	s	L	v	1	Q	м	Α	н	к	Ε	Т	к	Е
т	L	L	Т	Ε	т	А	s	S	L	۷	к	Ν	А	1	Q	L	s	Т	Е	Q	L	v	Ν
Α	Е	L	v	R	L	s	к	R	L	v	Е	Ν	А	v	L	К	А	v	Q	Q	Y	L	Е
E	т	Ρ	Ε	Ε	v	А	А	D	v	L	Α	Е	v	1	т	Α	Α	v	R	Α	v	D	G
Е	А	Q	Е	Ε	L	Α	w	к	1	Α	к	м	Т.	v	s	D	1	м	Q	Q	Α	Q	Υ
D	к	К	А	۷	L	А	Ε	к	1	v	Α	Е	А	Т	Е	К	Α	Е	R	E	L	S	S
L	Ε	L	Ε	т	К	S	S	к	L	v	Q	Ν	Т	1	Q	т	Α	v	D	Q	F	v	R
Q	v	Α	L	Α	L	v	Ε	D	v	Т	Ν	Υ	Α	v	К	1	v	Е	Е	Ε	R	Ν	Ρ
Α	Q	R	Ν	L	Q	s	1	R	L	Т	Α	Е	L	L	s	R	Α	к	А	v	К	L	R
S	G	т	D	D	G	А	Q	Е	v	۷	к	D	Т	L	E	D	v	v	т	S	Α	1	к
Q	к	к	Q	Е	К	Α	Ν	R	Т.	v	Α	E	А	1	Α	R	Α	R	Α	R	G	Ε	Q
K	S	Q	E	Q	L	Α	А	E	L	Α	Е	Y	т	Α	К	1	Α	L	L	Ε	E	А	R
K	D	М	R	L	Ε	А	Е	А	v	۷	Ν	D	v	L	F	А	V	Ν	Ν	М	F	v	S
S	Α	D	R	Е	Т	Α	Е	Е	v	S	Α	R	Т	v	Q	v	V	т	А	Е	Α	v	Α
K	Т	Q	Ε	Q	L	Α	L	Е	м	Α	E	L	т	Α	R	1	S	Q	L	Е	м	Α	R
E	D	Т	w	R	К	Α	Ε	E	Α	۷	Ν	Е	v	К	R	Q	Α	м	S	Е	L	Q	К
M	D	т	L	Α	۷	Α	L	R	v	Α	E	E	Α	1	Е	Е	Α	1	S	К	Α	Е	Α
L	Q	S	М	D	Т	Α	к	D	т	L	E	т	Т,	V	R	Е	Α	Е	Е	L	D	E	Α
Ν	G	Α	L	۷	E	v	E	S	L	L	D	Ν	v	Υ	S	Α	Α	v	Е	к	L	Q	Ν
A	K	D	Ν	1	Ν	Т	E	Е	Α	Α	R	F	L	v	E	к	Т	L	V	Ν	н	Q	s
S	м	т	E	т	V	Α	E	Ν	1	V	т	S	1	L	к	Q	F	т	Q	S	Ρ	E	т
L	P	v	1	S	D	Α	R	S	v	L	L	E	Α	1	R	к	G	1	Q	L	R	К	V
	Q	T	E	Y	L	Α	к	Q	T.	V	D	Ν	Α	Т	Q	Q	Α						
	Q	Т	Е	γ	۷	Α	K	Q	1	V	D	Υ	Α	T	Η	Q	Α						

Protter

Protein secondary structure prediction (Jpred)

Amphipatic helix

Heliquest

1	Click to enlarge		
Physico-chemical properties	Polar residues + GLY	Nonpolar residues	
Hydrophobicity <h></h>	Polar residues + GLY (n / %)	Nonpolar residues (n / %)	AKKO
0.256	9 / 50.00	9 / 50.00	
Hydrophobic moment <µH>	Uncharged residues + GLY	Aromatic residues	
0.542	HIS 1, SER 3, GLY 0	TYR 1,	
Net charge z	Charged residues	Special residues	
-1	LYS 2, GLU 2, ASP 1,	CYS 0, PRO 0	
Hy	y <mark>drophobic face :</mark> A Y V L L I A		
Go to screening	Manual mutation	GA mutation	

Predicting the 3D structures of proteins from their amino-acid sequences

STRUCTURE SOLVER

DeepMind's AlphaFold 2 algorithm significantly outperformed other teams at the CASP14 proteinfolding contest — and its previous version's performance at the last CASP.

Analyses and interpretation of DNA variants

Somatic mutation detection in tumor samples

Raphael et al. Genome Med. 2014
MuTect 2 (GATK)

Best Practices for Somatic SNVs and Indels in Whole Genomes and Exomes - BETA

MutSig (MutSigCV)

MutSig builds a model of the background mutation processes (BMR) that were at work during formation of the tumors, and it analyzes the mutations of each gene to identify genes that were mutated more often than expected by chance, given the background model.

MutSigCV (CV for 'covariate') improves the BMR estimation by pooling data from 'neighbor' genes with similar genomic properties such as DNA replication time, chromatin state (open/closed), and general level of transcription activity.

Ensembl Variant Effect Predictor (VEP)

Variant Effect Predictor results @

Job details 🗉

Summary statistics 🖃

Results preview

• Navigation	Q Filters				🛃 Down	load
Page: < 1 of 109 >>> Show: 1 5 10 50 All variants	Uploaded variant	▼ is	 defined 	Add	AII:	VCE VEP TXT
					BioMart:	<u>Variants</u> ៤ <u>Genes</u> ៤

Show/hide columns Gene Feature type HGVSc HGVSp Uploaded Location Allele Consequence Symbol Feature Biotype Exon Intron **cDNA** CDS Protein Amino Codons Existing Impact variant . position position position acids variant 1:43815005-43815005 T frameshift variant HIGH MPI 4352 Transcript NM 005373.2 protein coding 10/12 1585-1586 1540-1541 514 R/MX AGG/ATGG 1:43815005-43815005 T frameshift_variant HIGH MPL 4352 Transcript XM_005270874.1 protein_coding 10/12 1519-1520 1519-1520 507 R/MX AGG/ATGG regulatory_region_variant_MODIFIER 1:43815005-43815005 T RegulatoryFeature ENSR0000005582 promoter flanking region <u>1:43815008-43815009</u> frameshift_variant HIGH MPL 4352 NM 005373.2 protein_coding 10/12 1589 1544 515 W/X TGG/TG COSM142839, Transcript COSM3719407 1:43815008-43815009 frameshift variant HIGH MPL XM 005270874.1 protein coding 10/12 1523 1523 508 W/X TGG/TG COSM142839. 4352 Transcript COSM18918. COSM3719407 1:43815008-43815009 regulatory_region_variant MODIFIER RegulatoryFeature ENSR0000005582 promoter flanking region -COSM142839. COSM18918, COSM3719407 1:43815013-43815013 T NM 005373.2 1548-1549 516-517 frameshift variant HIGH MPI 4352 Transcript protein coding 10/12 1593-1594 -/X -/T 1:43815013-43815013 T frameshift_variant HIGH MPL 4352 Transcript XM_005270874.1 protein_coding 10/12 1527-1528 1527-1528 509-510 -/X -/T 1:43815013-43815013 T regulatory region variant MODIFIER RegulatoryFeature ENSR0000005582 promoter flanking region 1:43815036-43815036 CC MPL <u>4352</u> NM_005373.2 10/11 splice_region_variant, LOW Transcript protein_coding intron_variant 1:43815036-43815036 CC splice_region_variant, LOW MPI XM 005270874.1 protein coding 10/11 4352 Transcript intron_variant

MutationAssessor

Intratumor heterogenity and clonal evolution

Cancer-Immunity cycle

Hackl et al. Nat Rev Genet 17: 441-458 (2016)

Neoantigen prediction

Hackl et al. Nat Rev Genet 17: 441-458 (2016)

NetMHCpan

→ Gag_180_209 TPCDUNTINITYOGHQAAAMQMLKETINEEA >> Gag_180_209 TPCDUNTINITYOGHQAAMQMLKETINEEA >> Peptide length 8, 9, 10, 11, 12 Alles in the standing of the stand ready term with a stand of the following predictions: >> * The standing of the stand ready term with a stand ready term with a stand ready term with a stand ready in the standing of the standing of the standing peptide in the standing of the standing of the stand ready in the standing of the standing	ALSEQU	I dold I	nput:										
Sin CBS With Channel and any NMUMERENA MMHCpan 4.0 Server RMHCpan 4.0 Server Rediction of pedide hands:	ICEANA STAFF	>Gag '	180 209										
Peptide length: 8, 9, 10, 11, 12 Allele: HLAA'03301 Toggle Sort by prediction score will return the following predictions: * Next Maximum end to a make year and to a make year the mark land access 5X FAA with the following predictions: * Next Maximum end to a make year and to a make year the mark land access 5X FAA with the following predictions: * Next Maximum end to a make year and to be a make year and to a make year the mark land access 5X FAA with the following predictions: * Next Maximum end to a make year and to be a make year and to a make year and to be a make year and	YSIS CBS	TPQDL	NTMLNTVGGHQ	AAMQMLKETINE	EA								
All HCpan 4.0 Server will club Mithich and All production of the the following prediction score will return the following predictions: will return the following predictions: if the marking data down sixt is a will return the following predictions: if the marking data down sixt is a will return the following predictions: if the marking data down sixt is a will return the following predictions: if the marking data down sixt is a will return the following predictions: if the marking data down sixt is a will return the following predictions: if the marking data down sixt is a will return the following predictions: if the marking data down sixt is a will return the following predictions: if the mark diver data will return the following predictions: if the mark diver data will return the following predictions: if the mark diver data will return the following predictions: if the mark diver data will return the following predictions: if the mark diver data will return the following predictions: if the mark diver data will return the following predictions: if the mark diver data will return the following predictions: if the mark diver data will return the following predictions: if the mark diver data will return the following predictions: if the mark diver data will return the following predictis will return the following	Costruction servers & neunicipality	Pentide	length: 8 9 10	11 12									
Togle Sort by prediction score	etMHCnan 4.0 Server	Allele:	HLA-A*0301	11, 12									
<pre>section of pepide-wh-C tails inform with the water bardet bardet or the analysis in with the water bardet bardet or the analysis in the case stars predict bardet of pepides in any HG diverse tails bardet of pepides in any HG diverse tails bardet of the stars period. The bardet diverse tails in any HG diverse tail bardet of the stars period. The bardet diverse tails in any HG diverse tails bardet of the stars period. The bardet diverse tails in any HG diverse tails bardet of the stars period. The bardet diverse tails in any HG diverse tails bardet of the stars period. The bardet diverse tails in any HG diverse tails bardet of the stars period. The bardet diverse tails in any HG diverse tails bardet of the stars period. The bardet diverse tails in any HG diverse tails bardet of the stars period. The bardet diverse tails in any HG diverse tails bardet of the stars period. The bardet diverse tails bardet of the stars period. The bardet diverse tails bardet of the stars period. The stars bardet for stars period to a start of the stars bard for the stars bardet for</pre>		Toggle	Sort by prediction	on score									
<pre>kin har webb of terms of naturaly etc. kin mark webb of terms of naturaly etc. web mark har webb of terms of provides to any MRC the same har webb of terms of provides to any MRC har webb of terms of the provides to any MRC the terms of the provides of the terms of terms of the terms of the terms of the terms of terms of the terms of terms of terms of terms of the terms of terms of</pre>	ediction of peptide-MHC class I binding			1									
<pre>the weak hinding of this served. All personal versions as WHK (fine server personal stateword gradies are weak to be product on a server of the server server. A control of the server. A control of the server server. A control of the server. A contrel of the server. A control</pre>	v in this version: the method is trained on naturally elute	will retu	irn the following p	predictions:									
<pre>#Keys yeeks beding operates is any MHL project is a calaboration between CBS_CEM_and Use if Impdir made /usr/opt/wmw/webface/tmp/server/netmhcpan/S9DBCCFF00005A84DAFF1311/netMHCpanVsuDB if Impdir Made /usr/opt/wmw/webface/tmp/server/metmore/s9DBCCFF00005A84DAFF1311/netMHCpanVsuDB if Impdir Made /usr/op</pre>	v the <u>version history</u> of this server. All previous versions a												
<pre>idians can be made for pridies of any length project is a collaboration between CBS_SEM_ and LAX project is a collabo</pre>	/HCpan server predicts binding of peptides to any MHC A). The MS eluted ligand data covers 55 HLA and mouse	# NetM	HCpan version	4.0									
<pre>moject is a collaboration between CBS_ISM_ and LAN. instructions in find fasta • • • • • • • • • • • • • • • • • • •</pre>	ictions can be made for peptides of any length.	# Tmpd	ir made /usr/o	pt/www/webface/	tmp/server/	netmho	:pan/	59DB	CCFF00005A84DAF	1311/netMHCpar	uVszuD8		
<pre>billion billion b</pre>	project is a collaboration between CBS, ISIM, and LIA.	# Inpu	t is in FSA fo	ormat									
BMISSION ar the mouse curver over the \P symbol for a short dea or dimut fasts \neg \P the a single sequences in FASTA form a dimet a file in FASTA formal dimetry from your local data where a fasta function for your local data that a +0001 (100) the a single sequences in FASTA formal dimetry from your local data that a +0001 (100) that a file in FASTA formal dimetry from your local data that a +0001 (100) the grant a file in FASTA formal dimetry from your local data that a +0001 (100) that a file in FASTA formal dimetry from your local data that a +0001 (100) that a file in FASTA formal dimetry from your local data that a +0001 (100) that a file in FASTA formal dimetry from your local data that a +0001 (100) that a file in FASTA formal dimetry from your local data that a +0001 (100) that a file in FASTA formal dimetry from your local data that a +0001 (100) that a +00001 (100) the prophotes \P that a +00001 (100) that that a +000001 (100) that a +00001 (100) that a +00001 (100) that a +00001 (100) that a +00001 (100) that that a +000001 (100) that that a +0	Instructions	# Pept	ide length 8.9	.10.11.12									
<pre># Make Eluted ligand likelihood predictions # Make Eluted ligand likelihood predictions # HLA-A03:01 : Distance to training data 0.000 (using nearest neighbor HLA-A03:01) # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Strong binding peptides 2.000 Post HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score % Rank Bindle Dot a suge sequence or several sequences in (2572) for the threshold for Weak binding peptides 2.000 Post HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score % Rank Bindle Dot a suge sequence of the threshold for Weak binding peptides 2.000 Post HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score % Rank Bindle Dot a suge sequence of the threshold for Weak binding peptides 2.000 Post HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score % Rank Bindle Dot a suge sequence of the threshold for Weak binding CQAMQMLK 0 0 0 0 0 HQAAMQMLK Gag_180_209 0.559729 0.2857 <= SE 14 HLA-A*03:01 HQAAMQMLK GQAMQMLK 0 1 1 0 0 GHQAAMQMLK Gag_180_209 0.01213130 1.1582 <= WE 7 HLA-A*03:01 MLNTVGCH MLNTVCCH 0 0 0 0 0 MLNTVGCHQ Gag_180_209 0.0319510 3.7842 I3 HLA-A*03:01 MLNTVGCHQ MLNTVGCHQ MLNTVGCHQ Gag_180_209 0.0319510 3.7842 I3 HLA-A*03:01 GHQAAMQMLK GQAAMQMLK 0 1 0 0 0 0 MLNTVGCHQ Gag_180_209 0.0124970 5.9719 IS HLA-A*03:01 GHQAAMQMLK GQAAMQMLK 0 1 0 0 0 0 MLKETINEE Gag_180_209 0.0124970 5.9719 IS HLA-A*03:01 MLKETINEE 0 0 0 0 0 0 MLKETINEE Gag_180_209 0.0079270 7.4157 Her species/cole Associative ~ Associative ~ Associative for the threshold for Second MLKETINEE 0 0 0 0 0 0 MLKETINEE Gag_180_209 0.0079270 7.4157 Protein Gag_180_209. Allele HLA-A*03:01. Number of high binders 1. Number of peptides 105 Link to Allele Frequencies in Worldwide Populations HLA-A03:01 Hink to Allele Frequencies in Worldwide Populations HLA-A03:01 </pre>	BMISSION			,,									
<pre>e di igut Fasta • • • • • • • • • • • • • • • • • • •</pre>	er the mouse cursor over the 😯 symbol for a short desc	# Make	Eluted ligand	l likelihood pre	dictions								
<pre>e of input Fasta • • • • • • • • • • • • • • • • • • •</pre>		HLA-A0	3:01 : Distanc	e to training o	lata 0.000	(using	r nea	rest	neighbor HLA-A	3-01)			
<pre>## a angle sequence or several sequences in FASTA for TPEHTITEAVCLENDERTIF # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 # Rank Threshold for Weak binding peptides 2.000 # Rank Threshold for Weak binding peptides 2.000 # Rank Threshold for Weak binding peptides 0.500 # Rank Threshold for Weak bindies 0.500 # Rank Threshold for Weak binding peptides 0.500 # Rank Threshold for Weak binding peptides 0.500 # Rank Threshold for Weak bindies 1. Number of peptides 105 AAV0201 (A1 AV201 (A1 AV201 (A1 AV201 (A2 AV2</pre>	e of input Fasta 🔻 3			· · · · · · · · · · · · · · · · · · ·			,						
where the first form our local dest multiple lengths): •••••••••••••••••••••••••••••	ite a single sequence or several sequences in <u>FASTA</u> for TPGHTIIYEAVCLHNDRTTIP	# Rank # Rank	Threshold for Threshold for	: Strong binding : Weak binding p) peptides Septides 2	0.500)						
<pre>ubmit a file in FASTA format directly from your local disk urdisuchen Keine Datei ausgewähit. tide length (you may select multiple lengths): tide length (you</pre>		Pos	HLA	Peptide	Core	Of Gp	Gl I	p Il	Icore	Identity	Score	%Rank	BindLevel
14 HLA-A*03:01 GHQAAMQMLK GQAAMQMLK 0 1 1 0 0 GHQAAMQMLK Gag_180_209 0.2137130 1.1582 <= WB		15	HLA-A*03:01	HQAAMQMLK	HQAAMQMLK	0 0	0	0 0	HQAAMQMLK	Gag_180_209	0.5697290	0.2857	<= SB
bmit a file in FASTA format directly from your local disk tribucten		14	HLA-A*03:01	GHQAAMQMLK	GQAAMQMLK	0 1	1	0 0	GHQAAMQMLK	Gag_180_209	0.2137130	1.1582	<= WB
bmit a file in FASTA formal directly from your local disk thsuchen		7	HLA-A*03:01	TMLNTVGGH	TMLNTVGGH	0 0	0	0 0	TMLNTVGGH	Gag_180_209	0.0487720	3.0466	
chsuchen	bmit a file in FASTA format directly from your local disk	12	HLA-A*03:01 HLA-A*03:01	CCHOJAMOMIK	CONTROLLA	0 0	2	0 0	CCHOJIMOMIK	Gag_180_209	0.0319510	3./842	
ide length (you may select multiple lengths): 15 HILA-A*03:01 HQAANQMLKE HQAANQMLK 0 0 0 HQAANQMLK Gag_180_209 0.0124370 5.9719 is peptides is percentative is percentative <td>rchsuchen Keine Datei ausgewählt.</td> <td>12</td> <td>HLA-A*03-01</td> <td>VGCHOAAMOMLK</td> <td>VOT TWOMPR</td> <td>0 1</td> <td>3</td> <td>0 0</td> <td>VGCHOAAMOMLK</td> <td>Gag_100_200 Gag_180_209</td> <td>0 0166440</td> <td>5 2079</td> <td></td>	rchsuchen Keine Datei ausgewählt.	12	HLA-A*03-01	VGCHOAAMOMLK	VOT TWOMPR	0 1	3	0 0	VGCHOAAMOMLK	Gag_100_200 Gag_180_209	0 0166440	5 2079	
de length (you may select multiple lengths): 16 HLA-A+03:01 QAAMQMLK QAA-MQMLK 0 0 0 3 1 QAAMQMLK Gag_180_209 0.0086270 7.1279 er peptides 21 HLA-A+03:01 MLKETINEE MLKETINEE Gag_180_209 0.0079270 7.4157 er peptides species/coil supertype representative * AV0101 (A1) Protein Gag_180_209. Allele HLA-A+03:01. Number of high binders 1. Number of weak binders 1. Number of peptides 105 AV0101 (A2) Av0200 (A2)		15	HLA-A*03:01	HOAAMOMLKE	HOAAMOMLK	0 0	0	0 0	HOAAMOMLK	Gag 180 209	0.0124970	5.9719	
Implementations 21 HLA-A+03:01 MLKETINEE MLKETINEE 0 0 0 0 0 MLKETINEE Gag_180_209 0.0079270 7.4157 er peptides er peptides stagecies/loci supertype representative tAllele (max 20 per submission) Protein Gag_180_209. Allele HLA-A+03:01. Number of high binders 1. Number of weak binders 1. Number of peptides 105 A*01:01 (A2) Link to Allele Frequencies in Worldwide Populations HLA-A03:01	de length (you may select multiple lengths):	16	HLA-A*03:01	QAAMQMLK	QAA-MQMLK	0 0	0	3 1	QAAMQMLK	Gag 180 209	0.0086270	7.1279	
er peptides er peptides t species/loci supertype representative t Allele (max 20 per submission) t Allele (max	er peptides	21	HLA-A*03:01	MLKETINEE	MLKETINEE	0 0	0	0 0	MLKETINEE	Gag 180 209	0.0079270	7.4157	
ier peptides at species/loci is supertype representative rt Allele (max 20 per submission) Protein Gag_180_209. Allele HLA-A*03:01. Number of high binders 1. Number of weak binders 1. Number of peptides 108 -A*01:01 (A1)	ner peptides =												
<pre>ct species/loci ① supertype representative ct Allele (max 20 per submission) ① A*00:01 (A2) A*00:01 (A2) A*00:01 (A3) A*02:01 (A2) A*02:01 (A2</pre>	ner peptides 👻												
Supertype representative • Protein Gag_180_209. Allele HLA-A*03:01. Number of high binders 1. Number of weak binders 1. Number of peptides 105 Ar01:01 (A1) ^ Link to Allele Frequencies in Worldwide Populations HLA-A03:01 -A*02:01 (A2) _	ct species/loci 😗												
Actillele (max 20 per submission) Protein Gag_180_209. Allele HLA-A*03:01. Number of high binders 1. Number of weak binders 1. Number of peptides 10; CA*01:01 (A1) Comparison Comparison CA*02:01 (A2) Comparison Comparison CA*02:01 (A2) Comparison Comparison CA*02:01 (A2) Comparison Comparison CA*02:01 (A2) Comparison Comparison CA*02:02 (A24) Comparison Comparison	supertype representative												
AA*01:01(A1) ^ AA*02:01(A2) AA*03:01(A3) AA*24:02(A24) Link to Allele Frequencies in Worldwide Populations HLA-A03:01 	ect Allele (max 20 per submission) 3	Protei	n Gag_180_209.	Allele HLA-A*0	3:01. Numbe	er of h	high	bind	lers 1. Number of	f weak binders	1. Number	of pepti	des 105
AA ^A 02.01 (A2) AA ^A 03.01 (A3) AA ^A 24.02 (A24) Link to Allele Frequencies in Worldwide Populations HLA-A03:01 													
A-A*03:01 (A3) A-A*24:02 (A24)	A-A*01:01 (A1)		o Allele Frequ	encies in World	wide Popula	tions	HLA-	A03:	01				
A-A*24:02 (A24)	A-A*01:01 (A1) ^ A-A*02:01 (A2)	Link t											
	A-A*01:01 (A1) ^ -A-A*02:01 (A2) -A-A*03:01 (A3)	Link t											

http://www.cbs.dtu.dk/services/NetMHCpan/

Deconvolution analyses

R package: *immunedeconv* - quanTlseq - EPIC

> Hackl H *et al.* Nat Rev Genet 2017, Finotello F *et al.* Genome Med 2019, Racle J *et al.* Elife 2019, Sturm G *et al.* Bioinformatics 2019

IntOGen

IntOGen Mutations 2014.12

Cancer types and projects chart

Cancer Types	28
Projects	48
Samples	6792
Somatic mutations	1341752
Coding sequence mu	tations
(CSMs) 🖯	
in driver genes	21648
in all genes	1341706
Protein affecting muta	ations
(PAMs) 🔁	
in driver genes	18649
in all genes	603770

Driver genes

PIK3C2B CTCF BNC2 DDX3X WNK1 NCOR2 MYH10 ARFGEF1 SPTAN1 ARID1B NFE2L2 MECOM ARHGAP35 PLXNA1 **MYH11 MED12** TJP1 PRPF8 MAP3K1 SMAD4 KALRN PLXNB2 KDM6A HGF RB1 NOTCH1 ROBO2 DNMT3AUSP6 IEN SVEP1 CDK12 FBXW7 NSD1 PTCH1 ACACA **ZFHX3** SETD2 GATA3 FAT2 KDR FAM123B ARFGEF2 GNAS ARID1A CHD6 PLCB1 CTNNB1 CUX1 ATRX ASPM MAGI2 MLL CIC CHD8 MLL₂. COL1A1 ATR CDKN2A APC LAMA2 NF1 CHD4 FLT3 XRN1 SF3B1 ARID2 ATM **F8** CNOT1 MGA PCDH18 NRAS TP53 TAF1 SH1L MET NCOR1 FN1 MTOR FGFR2 CASPE 1 KAT6B MYH14 BRCA1 CHD9 BRCA2 EIF4G3 PTPRU MYH9 EP300 BCLAF1 PIK3R1 BPTF EPHB2 LRP6 TP53BP1 BRWD1 STAG2 BAP1 ZNF292 BCOR DICER1 ERBB2 SETDB1 SOS1

Cancers arise due to alterations in genes that confer growth advantage to the cell . More than 400 such 'cancer genes', identified to date are currently annotated in the Cancer Gene Census.

Cancer driver mutations (cancer drivers) versus passenger mutations can be identified based on:

- Functional Impact
- Recurrence

IntOgen (Integrative Onco Genomics)

- Driver signals
 - Clustered mutations (OncodriveCLUST)
 - Functional Mutations (OncodriveFM)
 - Recurrent Mutations (MutSigCV)
- Mutation frequency per cancertype
 - No. of mutated samples in cancer type
 - No. of protein affecting mutated samples in cancer type (PAM)
- Mutation distribution along protein sequence
 - Protein domains
 - No. and position of mutation of protein affecting mutated samples in cancer type (PAM)
 - Different transcripts

Examples

- What is the most common BRAF mutation
- In which cancer types IDH1 is a cancer driver and in which cancer type mutation of IDH1 is most frequent
- Most common drivers in breast carcinoma
- Mutation frequency of VHL

TCGA

International Cancer Genome Consortium (ICGC)

Data Portal Data Access Compliance Office Get Cancer Data Apply for Access to Controlled Data	Contact Us Log In Create an Account
International Cancer Genome Consortium	Enter keywords Search
Home Cancer Genome Projects Committees and Working Groups	Policies and Guidelines Media
ICGC Cancer Genome Projects	ICGC Goal: To obtain a comprehensive description of genomic, transcriptomic and epigenomic changes in 50 different tumor types and/or subtypes which are of clinical and
Sort by: Organ System	societal importance across the globe.
Sort by: Organ System • Bladder Cancer Bladder Cancer China United States	Read more »

TCGA

Genomic Data Commons (TCGA)

NI	н	NATIONAL CANCER INSTITUT	E 🖀 Home	Proje	ects 😽 E	xploration 🎄 Analysis	Repository		Q Quick Se	arch Manage Sets 🖬	Login 🍞	Cart 💽 🏭	GDC Apps
		GDC Data Portai								-	-	_	
WHORAL CALCED NATITUTE Image: Note of the portage Project Exponential Repository Q. Guick Search Manage Set Image Set		Browse A	Annotations										
		Ad	ld a File Filter	5	Clear Cas	e IN input set						S Advanced	Search
	~ Sea	arch Files	0										
	Q	e.g. 142682.bam, 4f6e2e7a-b.		File	s (53.847)	Cases (8.136)		📜 Ado	All Files to Cart	A Manifest View 8.136	Cases in Exp	oloration Viev	w Images
	∽Dat	a Category			Primary	/ Site	Project	Data Ca	ategory	Data Type		Data Format	
	Sin	nple nucleotide variation py number variation quencing reads ospecimen anscriptome profiling	# Files 24.915 8.699 5.405 3.981 3.356					Show	More				
	Det		5 More	Show	ving 1 - 20 o	f 53.847 files 🖺 139.55	5 TB					J.SON	TSV
	✓ Dat	атуре	# Files		Access	File Name		C	Cases Project	Data Category	Data Forma	t File Size An	notations
	🗆 An	notated Somatic Mutation aw Simple Somatic Mutation	8.851		€ open	57f3f942-22e9-4306-8de e.level3betas.txt	ef-947ececbf870.methylation_array.	sesam	1 TCGA-DLBC	DNA Methylation	ТХТ	12.82 MB	0
		igned Reads asked Annotated Somatic Mutat	5.405		e open	37e31c00-3f54-4ad2-ad masked.maf.gz	2b-2294e269df05.wxs.aliquot_ense	emble_	1 TCGA-DLBC	Simple Nucleotide Variation	MAF	43.83 KB	1
		ene Level Copy Number Scores	3.104		≙ controlled	dfa74511-2a52-4bd5-88	f2-dad8c7450be4_wgs_gdc_realn.t	bam	1 TCGA-DLBC	Sequencing Reads	BAM	230.59 GB	0
	√ Fy n	perimental Strategy	21 More		e open	TCGA-FF-8043-01A-01- 4daf.svs	BS1.b466c057-d63f-480d-9ef2-421	<u>1947dc</u>	1 TCGA-DLBC	Biospecimen	SVS	43.55 MB	0
			# Files		■ controlled	CENTS_p_TCGASNP_2 _1039404.CEL	12 216 217 N GenomeWideSNP	<u>6_E10</u>	1 TCGA-DLBC	Copy Number Variation	CEL	69.13 MB	0
		rgeted Sequencing XS	13.435	7	■ controlled	17597693-0296-4012-b c_mutation.vcf.gz	9d1-bb977c4e021e.wxs.muse.raw_s	<u>somati</u>	1 TCGA-DLBC	Simple Nucleotide Variation	VCF	34.45 KB	0
	RN Ge	NA-Seq enotyping Array	6.828 6.617		▲ controlled	9ba2c013-ab3d-4dc3-9t Z	paf-24b3af16a5c9.wxs.Pindel.aliquo	o <u>t.maf.g</u>	1 TCGA-DLBC	Simple Nucleotide Variation	MAF	941.41 KB	0
	□ Me	ethylation Array	2.439 6 More		Controlled	c70162ed-dafc-4a4c-b7	dc-354d2c06b2c9.rna_seq.star_spl	lice_ju	1 TCGA-DLBC	Transcriptome Profiling	TSV	1.86 MB	0
	∼ Wo	rkflow Type	Q		e open	TCGA-FF-8043-01Z-00- 71ce.svs	DX1.f3a8c298-f59e-469a-93f0-322	11017	1 TCGA-DLBC	Biospecimen	SVS	508.89 MB	0
	🗆 GE	ENIE Simple Somatic Mutation	# Files	-	≙ controlled	e89e9c69-ffcd-4a4c-818	3d-1dee43ddc76a_wgs_gdc_realn.b	<u>bam</u>	1 TCGA-DLBC	Sequencing Reads	BAM	410.02 GB	0
	GE	ENIE Copy Number Variation	3.104 2.580		e open	TCGA-DLBC.447f9c21-4 elic_specific.seg.txt	1fe0-4b52-a5d5-78668e443665.asc	at2.all	1 TCGA-DLBC	Copy Number Variation	ТХТ	7.51 KB	0

TCGA barcodes

Tissue source site

Biospecimen core resource

Universally Unique Identifiers (UUIDs) have replaced TCGA barcodes

Sample

01	Primary solid Tumor
02	Recurrent Solid Tumor
03	Primary Blood Derived Cancer - Peripheral Blood
04	Recurrent Blood Derived Cancer - Bone Marrow
05	Additional - New Primary
06	Metastatic
07	Additional Metastatic
08	Human Tumor Original Cells
09	Primary Blood Derived Cancer - Bone Marrow
10	Blood Derived Normal
11	Solid Tissue Normal
12	Buccal Cell Normal
13	EBV Immortalized Normal
14	Bone Marrow Normal
20	Control Analyte
40	Recurrent Blood Derived Cancer - Peripheral Blood
50	Cell Lines

TCGA data levels

Data Level	Level Type	Description	Example
1	Raw	Low-level data for single sampleNot normalized	 Sequence trace file Affymetrix CEL file¹ BAM file
2	Processed	 Normalized single sample data Interpreted for presence or absence of specific molecular abnormalities 	 Putative mutation call for a single sample Probed locus amplification/deletion/Loss of Heterozygosity (LOH) calls in a sample Signal of a probe or probe set for a sample
3	Segmented/Interpreted	 Aggregate of processed data from single sample Grouped by probed loci to form larger contiguous regions (in some cases) 	 Validated mutation call for a single sample Amplification/deletion/Loss of Heterozygosity (LOH) calls for a sample region Expression signal of a gene for a sample Genomic copy-number data
4	Summary/Regions of Interest (ROI)	 Quantified association across classes of samples Associations based on two or more Molecular abnormalities Sample characteristics Clinical variables 	 Discovery that a genomic region is amplified in 10% of TCGA glioma samples.

Sequencing data (fastq, BAM) (data level 1) is control accessed at Cancer Genomics Hub (CGHub)

Firebrowse

Download RNAseqV2 with Firebrowse

Hybridization REF	TCGA-2J-AAB1-01A-11R-A41B-07	TCGA-2J-AAB1-01A-11R-A41B-07	TCGA-2J-AAB1-01A-11R-A41B-07	TCGA-2J-AAB4-01A-12R-A41B-07	TCGA-2J-AAB4-01A-12R-A41B-07	TCGA-2J-AAB4-01A-12R-A41B-07	TCGA-2J-AAB6-01A-11R-A41B-07
gene_id	raw_count	scaled_estimate	transcript_id	raw_count	scaled_estim	transcript_id	raw_count
A1BG 1	167.92	3.43E-06	2qsd.3,uc002	134.85	2.46E-06	uc002qsd.3,u	141.16
A1CF 29974	52	9.63E-07	uc001jjk.1,uc0	127	2.03E-06	uc001jjh.2,uo	14
A2BP1 54715	1	8.82E-09	2cyx.2,uc002c	5	4.07E-08	uc002cyr.1,u	0
A2LD1 87769	370.02	8.87E-06	1,uc001vor.2,u	263.92	6.07E-06	uc001voq.1,ι	278.94
A2ML1 144568	176	1.49E-06	Lqva.1,uc001q	0	0	uc001quz.3,ι	3105
A2M 2	40392.8	0.000548528	l,uc001qvk.1,i	37630.67	0.00050451	uc001qvj.1,u	14564.83
A4GALT 53947	3160	5.56E-05	3bdb.2,uc010	2744	4.47E-05	uc003bdb.2,t	1917
A4GNT 51146	893	1.89E-05	uc003ers.2	113	2.21E-06	uc003ers.2	2
AAA1 404744	4	1.44E-07	uc010kwp.1,u	1	5.74E-08	uc003tdz.2,u	2
AAAS 8086	1402	2.85E-05)1scr.3,uc001s	1268	2.38E-05	uc001scr.3,u	1427
AACSL 729522	1	1.69E-08	2,uc011dgk.1,	2	3.13E-08	uc003mjk.2,ι	0
AACS 65985	2445	2.89E-05	2,uc009zyg.2,	2915	3.28E-05	uc001uhc.2,u	994

Download clinical data with Firebrowse

Download clinical data with Firebrowse

Patients

								\rightarrow					
	Hybridization REF	tcga-2j	j-aab1	tcga-2j	-aab4	tcga-2	j-aab6	tcga-2	j-aab8	tcga-2	j-aab9	tcga-2j	-aaba
ם ו	Composite Element REF	value	value	value	value	value	value	value	value	value	value	value	value
	years_to_birth 65	48	75	71	70	55	73	73	61	55	71	43	58
υΙ	vital_status 1	0	1	0	1	1	0	1	0	0	0	0	0
	days_to_death 66	NA	293	NA	627	607	NA	691	NA	NA	NA	NA	NA
2	days_to_last_followup	NA	729	NA	80	NA	NA	676	NA	1287	969	484	440
Ĕ	tumor_tissue_site	pancrea	15	pancrea	15	pancrea	15	pancrea	as	pancre	as	pancrea	s
ן פ	pathologic_stage	stage i	iib	stage i	ib	stage :	iia	stage :	iib	stage	iib	stage i	ib
~	pathology_T_stage	t3	t2	t3	t3	t3	t3	t3	t3	t3	t3	t3	t3
2	pathology_N_stage	n1	n1	n0	n1	n1	n1	n0	n1	n0	n0	nl	n1
ا د	pathology_M_stage	mO	mO	mO	mO	mO	mO	mO	mO	mO	mO	mO	mO
= 🗸	gender male male	male	male	female	male	male	male	male	female	male	male	female	female
Ξ	date_of_initial_patholo	gic_diag	nosis	2012	2012	2012	2012	2012	2012	2012	2012	2011	2011
כ	radiation_therapy	no	no	no	NA	yes	no	yes	yes	no	yes	yes	yes
7	histological_type	pancrea	as-adenoo	carcinoma	a-other	subtype	pancrea	as-adeno	carcinoma	-other	subtype	pancrea	s-adeno
ΰ	number_pack_years_smoke	d	25	NA	NA	NA	NA	51	2.2	7.5	NA	42	NA
۲ ۲	year_of_tobacco_smoking	onset	1962	NA	NA	NA	NA	NA	1960	1960	NA	1973	NA
1	residual_tumor r0	r0	r0	r1	r0	r1	r0	r1	rO	rO	r1	r0	r0
Ë	number_of_lymph_nodes	7	0	0	3	6	2	0	4	0	0	2	8
D D	race white white	white	white	white	white	white	white	white	white	white	white	white	white
'	ethnicity NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

cBioPortal

- data from 105 cancer genomics studies
- TCGA and other studies
- Query and download
- Many different analyses options

elect Cancer Study:		
Search		1 study selected. Deselect all
Prosta	ate Adenocarcinon	ma (TCGA, Provisional) 499 sample
Prosta	ate Adenocarcinon	ma (TCGA, Cell 2015) 333 samples
Select Genomic Profiles: Image: Mutations (?) Image: Putative copy-number altera Image: mRNA Expression z-Scores Enter a z-score threshold ±	ations from GISTIC 👔 (RNA Seq V2 RSEM) 👔 : 2.0	
Select Patient/Case Set:	All Tumors (333) To build your own case set, tr	try out our enhanced Study View.
Enter Gene Set: Advar Prostate Cancer: AR Signalin	nced: Onco Query Langua g (10 genes)	Jage (OQL)
Select From Recurrently Mu	tated Genes (MutSig)	Select Genes from Recurrent CNAs (Gistic)
SOX9 RAN TNK2 EP30	0 PXN NCOA2 AR I	NRIP1 NCOR1 NCOR2

OncoPrint	Mutual Exclusivity	Plots	Mutations	Co-Expression	Enrichments	Network	IGV	Download	Bookmark			
Case Set: All Tumors: All tumor samples (333 natients / 333 samples)												
Case Set. An rumors. An rumor samples (SSS patients / SSS samples)												
Altered in 140 (42%) of 333 cases/patients												
SOX9		6%										
RAN		6%										
TNK2		9%										
EP300		5%										
PXN		5%										
NCOA2		12%										
AR		5%					Ī					
NRIP1		4%										
NCOR1		6%										
NCOR2		8%										
Genetic A	Iteration Ampli	fication	Deep Del	etion ∎ Misse	ense Mutation	Truncatin	ig Mutatic	n mRN	IA Upregulation			

TCIA

The Cancer Immunome Atlas

Charoentong et al. Cell Rep. 2017. 18:248-262

Charoentong et al. Cell Rep. 2017. 18:248-262

TCIA (Immunophenogram)

Patient		Disease	Gender	Age (years)	IPG Study
search for pat	tient	All	▼ AII	▼ min 🔹 >=< max 🛓	/
CGA-BH-A0B2		BRCA			
CGA-E2-A14N		BRCA	female	37	9
	Clinical parameter		va	lue	HLA-F
	ER+		0		HIA-E
	HER2+		0		HLA-DPA1
	PAM50MRNA		Ba	sal	HLA-C
	PR+		0		HLA-B
	TNBC		1		+LA-A
	date of initial pathologic	diagnosis	20	07	FAP2
	days to death		NA		API
	days to last followup		14	34)01
	days to last known alive		NA		COS
	ethnicity		nc	t hispanic or latino	:D27
	gender		fe	nale	PD-L2
	histological type		int	Itrating ductal carcinoma	PD-L1
	number of lymph nodes		1		TIM3
	pathologic stage		st	ige iib	
	pathology M stage		m	1	LAUS
	pathology N stage		n1		CTLA-4
	pathology T stage		t2		
	race		wł	ite	
	radiation therapy		ye	5	
	tumor tissue site		br	east	
	vital status		0		
	years to birth		37		

One color microarrays (Affymetrix)

Affymetrix chips

Processing of Affymetrix chips

Robust Microarray Averaging (R/Bioconductor pkg. RMA)

- Background modeling (PM vs. MM)
- Quantile normalization across all arrays

- Probe summarization (median polish)
- Log2-transformation (log2-intensities)

Differentially expressed genes

ID	GENE	КО1	ко2	коз	WT1	WT2	WT3	logFC	AveExpr	t	P.Value	adj.P.Val
10386473	Srebf1	5.72	5.58	6.06	4.91	4.88	5.09	0.83	5.33	7.66	3.7E-09	4.6E-05
10463355	Scd2	6.63	6.26	6.92	5.13	4.77	5.01	1.64	5.59	7.52	5.6E-09	4.6E-05
10548105	Ccnd2	5.56	5.48	5.49	5.05	5.11	5.02	0.45	5.23	5.21	7.3E-06	3.9E-02
10587284	ElovI5	5.81	5.67	5.97	5.05	5.06	5.35	0.66	5.44	4.87	2.1E-05	8.4E-02
10540122	Slc6a6	7.27	7.16	7.35	6.75	6.81	6.71	0.50	7.04	4.80	2.6E-05	8.5E-02
10605437	Pls3	5.50	5.63	5.41	4.88	4.93	4.87	0.62	5.20	4.63	4.3E-05	9.7E-02
10543791	Podxl	7.30	7.03	7.08	6.31	6.52	6.33	0.75	6.59	4.61	4.6E-05	9.7E-02
10356084	lrs1	8.30	8.76	7.61	6.62	7.33	7.19	1.18	7.60	4.57	5.2E-05	9.7E-02
10346164	Sdpr	5.68	5.37	5.43	5.00	5.03	4.95	0.50	5.17	4.54	5.7E-05	9.7E-02
10387625	Chrnb1	6.31	6.08	6.06	5.73	5.59	5.81	0.44	6.01	4.52	6.0E-05	9.7E-02
10407390	Ptbp1	4.84	5.26	5.07	4.22	3.98	4.64	0.77	4.88	4.43	8.0E-05	1.1E-01
10507539	Elovl1	5.08	4.58	4.89	4.33	4.34	4.55	0.44	4.61	4.40	8.7E-05	1.1E-01
10585988	Myo9a	4.05	4.00	4.01	3.50	3.64	3.79	0.38	3.93	4.39	9.1E-05	1.1E-01
10371959	Elk3	5.94	5.85	5.78	5.28	5.44	5.46	0.47	5.66	4.38	9.3E-05	1.1E-01

condition KO vs. condition WT

Differentially expressed genes

Condition A vs. B

• down (>2FC, FDR<0.1) • NS • up (>2FC, FDR<0.1) • NA

B1 B2 B3 A1 A2 A3

Differentially expressed genes

Moderated t-test (R/Bioconductor package *limma*)

$$t = \frac{\overline{M}}{(a+s)/\sqrt{n}} \qquad => p-value$$

estimated from all genes

- At a significance level of 0.05 in the case of 10000 tests 500 might be wrong.
- Account for this by correction for multiple hypothesis testing
 - Bonferroni correction (multiply p with number of tests)
 - Benjamini-Hochberg correction (based on the FDR)
- adjusted p-value<0.05 (<0.1) significantly differentially expressed

Methods to correct p-values for multiple testing

$$p_{(i)}^{BH} = \min \{ \min \{ p_{(j)}^* n/j \}, 1 \}$$

 $j \ge i$

P-value distribution

Josh Starmer (StatQuest)

Solexa (Illumina)

- 1. Prepare genomic DNA sample
- 2. Attach DNA to surface
- 3. Bridge amplification
- 4. Fragments become double stranded
- 5. Denature double stranded DNA
- 6. Complete amplification

Solexa (Illumina)

First chemistry cycle: determine first base

To initiate the first sequencing cycle, add all four labeled reversible terminators, primers, and DNA polymerase enzyme to the flow cell.

Image of first chemistry cycle

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

The blocked 3' terminus and the fluorophore from each incorporated base are removed.

Sequence read over multiple chemistry cycles

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.

RNAseq

Phred Quality Score

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Q=-10* log P

fastq format

Quality of Sequencing (FASTQC)

Analysis steps

0. Image analysis and base calling (Phred quality score)

=> FastQ files (sequence and corresponding quality levels)

- 1. Trimming adaptors and low quality reads
- 2. Read mapping (Spliced alignment) (STAR)
- => SAM/BAM files
- 3. Transcriptome reconstruction (reference transcriptome, GTF file)
- Expression quantification (transcript isoforms) (HTseq, featureCounts)

-count reads -normalization

 Differential expression analysis (negative-binomial test) (DESeq2, edgeR)

Normalization

- Reads per kilobase per million reads (RPKM)
- Fragments per kilobase per million (FPKM) for paired-end seq.

- TPM (transcripts per million)
- Quantile normalization (upper quantile normalization)
- TMM (trimmed mean of M values) (edgeR) => cpm
- Relative log expression (RLE) (DESeq2)
 - \Rightarrow log2 (norm_counts+1)
 - \Rightarrow regularized log (rlog)
 - \Rightarrow variance stabilisation transform (vst)

RPKM (FPKM)

GENE	S1	S2	S3
A (2kb)	10	12	30
B (4kb)	20	25	60
C (1kb)	5	8	15
D (10kb)	0	0	1
Tens(Mio)	3.5	4.5	10.6

1. Divide by millions of reads

A (2kb)	2.86	2.61	2.83
B (4kb)	5.71	5.43	5.66
C (1kb)	1.43	1.96	1.42
D (10kb)	0.00	0.00	0.09

RPM

2. Divide by gene length in kb

	A (2kb)	1.43	1.30	1.42
RPKM	B (3kb)	1.43	1.36	1.42
	C (1kb)	1.43	1.96	1.42
	D (10kb)	0.00	0.00	0.01

TPM

GENE	S1	S2	S3
A (2kb)	10	12	30
B (4kb)	20	25	60
C (1kb)	5	8	15
D (10kb)	0	0	1

1. Divide by gene length in kb

A (2kb)	5	6	15
B (4kb)	5	6.25	15
C (1kb)	5	8	15
D (10kb)	0	0	0.1
Tens(Mio)	1.5	2.025	4.51

RPK

2. Divide by millions of RPK

A (2kb)	3.33	2.96	3.326
B (3kb)	3.33	3.09	3.326
C (1kb)	3.33	3.95	3.326
D (10kb)	0	0	0.02

TPM

TCGA

RNAseqV2 analysis *MapSplice* is used to do the alignment and *RSEM* to perform the quantitation.

raw_count ... for EBseq introduce directly for DESeq2, EdgeR use integers

scaled_estimate ... transcript per million TPM=scaled estimate*10⁶

normalized_count upper quartile normalized RSEM count estimates

Isoform quantification

Transcript expression method

- Uncertainy in assigning reads to isoforms
- Paired-end sequencing
- Spliced alignment
- Alternative splicing (statistical significant?)

RNA seq quantification using pseudoalignment (kallisto)

Transcriptome de Bruijn Graph (T-DBG) where nodes (v1, v2, v3, ...) are *k*-mers

Representation of gene expression

experiments (patients)

- *n* x *m* matrix with *n* genes and *m* experiments (conditions, patient samples)
- Representation as heatmap (e.g. *red* upregulated genes, green down regulated genes, *black* no change)
- For experiments in reference design:
 - \log_2 -fold change (\log_2 FC, $\log_2(A/B)$, \log_2 ratio)
- For patient samples and no reference:
 - mean centered log₂-levels for each gene

log₂-intensities for one-color arrays log₂-RPKM for RNAseq

z-score of log₂-levels

Z= (X-m)/s X...log₂-levels, m...mean, s...standard deviation

heatmap

genes

Gene expression profiling

cell development

cancer

Hierarchical clustering

- Agglomerative (bottom up), unsupervized
- Cluster genes or samples (or both= biclustering)
- Distances are encoded in dendogram (tree)
- Cut tree to get clusters
- Pearson correlation, Euclidean distance
- Computational intensive (correlation matrix)
- 1. Identify clusters (items) with closest distance
- 2. Join to new clusters
- 3. Compute distance between clusters (items) (see linkage
- 4. Return to step 1

Linkage

Single-linkage clustering Minimal distance					
Complete-linkage clustering Maximal distance	$\underbrace{\underbrace{}_{\bullet}}_{\bullet} \underbrace{\underbrace{}_{\bullet}}_{\bullet} \underbrace{\underbrace{}_{\bullet}} \underbrace{\underbrace{}_{\bullet}} \underbrace{\underbrace{}_{\bullet}}_{\bullet} \underbrace{\underbrace{}_{\bullet}}_{\bullet} \underbrace{\underbrace{}_{\bullet}} \underbrace{\underbrace{}_{\bullet} \underbrace{\underbrace{}} \underbrace{\underbrace{}_{\bullet}} \underbrace{\underbrace{}} \underbrace{\underbrace{}} \underbrace{\underbrace{}} \underbrace{\underbrace{}} $				
Average-linkage clustering Calculated using average distance (UPGMA) Average from distances not! expression values					
Weighted pair-group average Like UPGMA but weighted according cluster size					
Within-groups clustering Average of merged cluster is used instead of cluster elements					
Ward's method Smallest possible increase in the sum of squared er	rors				

K-means clustering

- partition n genes into k clusters, where k has to be predetermined
- k-means clustering minimizes the variability within and maximize between clusters
- Moderate memory and time consumption
- 1. Generate random points ("cluster centers") in n dimensions (results are depending on these seeds).
- 2.Compute distance of each data point to each of the cluster centers.
- 3. Assign each data point to the closest cluster center.
- 4.Compute new cluster center position as average of points assigned.
- 5.Loop to (2), stop when cluster centers do not move very much.

Principal component analysis (PCA)

PCA is a data reduction technique that allows to simplify multidimensional data sets into smaller number of dimensions (r<n).

Variables are summarized by a linear combination to the principal components. The origin of coordinate system is centered to the center of the data (mean centering). The coordinate system is then rotated to a maximum of the variance in the first axis.

Subsequent principal components are orthogonal to the 1st PC. With the first 2 PCs usually 80-90% of the variance can already be explained.

This analysis can be done by a special matrix decomposition (singular value decomposition SVD).

Singular value decomposition (SVD)

 $X = USV^T$ with $UU^T = V^TV = VV^T = I$

For mean centered data the Covariance matrix *C* can be calculated by XX^{T} . *U* are eigenvectors of XX^{T} and the eigenvalues are in the diagonal of *S* defined by the characteristic equation $|C - \lambda I| = 0$.

Transformation of the input vectors into the principal component space can be described by Y = XU where the projection of sample *i* along the axis is defined by the *j*-th PC:

$$y_{ij} = \sum_{t=1}^{m} x_{it} u_{tj}$$

Metric multidimensional scaling (MDS) = Principal Coordinate Analysis (PCoA)

e.g. Microbiome based on Bray-Curtis dissimilarity index

Moosbruger-Martinz et al. J Invest Derm 2020

Single-cell RNAseq analysis

Finotello F et al. Nat Rev Genet 2019

Single cell RNAseq

- Cell barcodes are random sequences to tag single cells used for multiplex sequencing
- UMIs are random sequences specific for each molecule to avoid amplification bias.

- Microwell based
- Droplet based

Single cell RNAseq analyses

- Seurat (R based, Butler 2018), Scanpy (Python based, Wolf 2018)
- QC filtering based on number of counts, number of detected genes, counts from mitochondrial genes to filter out dying cells (low counts but high mitochondrial fraction) or multiplets (high counts, high number of detected genes) but could be confounded by big cells, high mRNA content, quiescent cells, activated cellular respiration porcesses
- Gene filtering if only expressed in a few cells (advanced algorithms)
- Global scaling normalization (for each cell divide by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms
- Batch effect removal
- Regression out biological effects (e.g. cell cycle processes based on marker genes)
- Scaling (mean=0, variance=1) and linear dimension reduction (PCA)
- Cluster cells by graph embeded methods such as KNN graph and modularity optimization techniques such as the Louvain algorithm
- Nonlinear dimension reduction (tSNE, UMAP)
- Differentially expressed genes between clusters
- Identify marker genes and assign cell type identy to clusters

t-distributed stochastic neighbor embedding (t-SNE)

Non-linear dimension reduction method

Converting the high-dimensional Euclidean distances between data points into **conditional probabilities** (based on Students T distribution) that represent similarities.

Minimization of the sum of difference of conditional probability t-SNE minimizes the sum of Kullback-Leibler divergence of overall data points using a gradient descent method.

Hyperparamter: Perplexity (*Pi*)= $2^{H(Pi)}$ (5-50) with *Pi* is a probability distribution over all of the other data points explained by variance σi , learning rate ϵ (5), number of steps (e.g. 5000).

Distances between clusters might not mean anything

van der Maaten and Hinton. Journal of Machine Learning Research 2008

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)

Construction of a weighted k-neighbor graph.

In practice UMAP uses a force directed graph layout algorithm in low dimensional space

Single-cell data integration

Biological meaning of the gene sets

?

- Gene ontology terms
- Pathway mapping
 - Linking to Pubmed abstracts or associated MESH terms
 - Regulation by the same transcription factor (module)
 - Protein families and domains
 - Gene set enrichment analysis
 - Over representation analysis
Gene Ontology (GO)

The Gene Ontology project (http://geneontology.org) provides a **controlled vocabulary** to describe gene and gene product attributes in any organism.

The three organizing principles (categories) of GO are

cellular component

biological process

molecular function

mitochondrium

What's in a GO term?

– Term

transcription initiation

– ID

GO:0006352

Definition

Processes involved in starting transcription, where transcription is the synthesis of RNA by RNA polymerases using a DNA template.

Parent /child relation in directed acyclic graph (DAG)

Evidence code for GO annotations

ISS Inferred from Sequence S	Similarity
------------------------------	------------

- IEP Inferred from Expression Pattern
- IMP Inferred from Mutant Phenotype
- IGI Inferred from Genetic Interaction
- IPI Inferred from Physical Interaction
- IDA Inferred from Direct Assay
- RCA Inferred from Reviewed Computational Analysis
- TAS Traceable Author Statement
- NAS Non-traceable Author Statement
- IC Inferred by Curator
- ND No biological Data available

Pathways

Definition:

A **biological pathway** is a series of actions among molecules in a cell that leads to a **certain product** or a **change in a cell**. Such a pathway can trigger the assembly of new molecules, such as a fat or protein. Pathways can also turn genes on and off, or spur a cell to move (genome.gov/27530687).

Types of biological pathways:

- metabolic pathways
- signaling pathways
- gene regulation pathways

Canonical Pathways:

Idealized or generalized pathways that represent common properties of a particular signaling module or pathway

Pathways

- Kyoto Encylopedia of Genes and Genomes (KEGG)
- Reactome
- Wiki Pathways
- BioCyc
- Biocarta
- PANTHER

Over representation analysis

Over representation analysis

- Fisher exact test for contingency table
- Hypergeometric distribution

- Multiple hypothesis testing => adjust p-value
- Not only for GO Terms also for TFBS, pathways,...

DAVID

- Database for Annotation, Visualization and Integrated Discovery
- https://david.ncifcrf.gov
- Functional annotation tool (over representation analysis)

1019 mouse gene symbols

Dnajb1
Wnt11
Sorbs3
D230025D16Rik
Sfxn3
Hspa5
Golga3
Hgs
Npc1
Mta2
Cnn2
Spg20
Zpr1
•••

Functional Annotation Chart

Current Gene List: List_1 Current Background: Mus musculus 962 DAVID IDs © Options

Rerun Using Options Create Sublist

363 cł	art records					🔓 Download File
Sublist	<u>Category</u>	<u>Term</u>	¢ RT	Genes	Coun¢	% 🗢 P-Value Benjamir
	GOTERM_BP_ALL	cellular process	RT		597 6	52,1 1,0E-18 2,7E-15
	GOTERM_BP_ALL	cellular metabolic process	RT		407 4	42,3 2,5E-13 3,4E-10
	GOTERM_BP_ALL	regulation of cellular metabolic process	RT		227 2	23,6 1,1E-12 1,0E-9
	GOTERM_BP_ALL	regulation of metabolic process	<u>RT</u>		236 2	24,5 1,7E-12 1,1E-9
	GOTERM_BP_ALL	regulation of gene expression	<u>RT</u>		202 2	21,0 6,1E-12 3,3E-9
	GOTERM_BP_ALL	regulation of macromolecule biosynthetic process	<u>RT</u>		198 2	20,6 1,1E-11 4,9E-9
	GOTERM_BP_ALL	regulation of cellular biosynthetic process	<u>RT</u>		203 2	21,1 1,4E-11 5,4E-9
	GOTERM_BP_ALL	regulation of biosynthetic process	<u>RT</u>		203 2	21,1 2,0E-11 6,6E-9
	GOTERM_BP_ALL	regulation of macromolecule metabolic process	RT		215 2	22,3 4,0E-11 1,2E-8
	GOTERM_BP_ALL	cellular macromolecule metabolic process	<u>RT</u>		324 3	33,7 6,1E-11 1,6E-8
	GOTERM_BP_ALL	regulation of primary metabolic process	<u>RT</u>		212 2	22,0 1,3E-10 3,2E-8
	GOTERM_BP_ALL	regulation of transcription	<u>RT</u>		183 1	19,0 2,6E-10 5,8E-8
	GOTERM_BP_ALL	positive regulation of cellular biosynthetic process	RT		67 7	7,0 3,4E-10 7,1E-8

DAVID Bioinformatics Resources 6.7

National Institute of Allergy and Infectious Diseases (NIAID), NIH

Help and Manual

Gene set enrichment analysis

Gene set enrichment analysis

- 1. Given an *a priori* defined set of genes.
- Rank genes (e.g. by t-value between 2 groups of microarray samples)
 → ranked gene list L.
- 3. Calculation of an enrichment score (*ES*) that reflects the degree to which a gene set *S* is overrepresented at the extremes (top or bottom) of the entire ranked list *L*.
- 4. Estimation the statistical significance (nominal *P* value) of the *ES* by using an empirical phenotype-based permutation test procedure.
- 5. Adjustment for multiple hypothesis testing by controlling the false discovery rate (FDR).

http://www.broadinstitute.org/gsea http://www.broadinstitute.org/cancer/software/gsea/wiki/

Footprint methods to infer functional activity

Signalling Metabolism Gene expression

Dugourd and Saez-Rodriguez, Curr Opin Syst Biol, 2019

Footprint methods to infer functional activity

Compendium of perturbation experiments of signaling pathways to infer pathway activity from gene expression readout (14 pathways)

CytoSig

- Collection of >20k transcriptome profiles for human cytokine, chemokine and growth factor responses.
- Prediction of signaling activities in distinct cell populations in infectious diseases, chronic inflammation and cancer using bulk and single-cell transcriptomic data.

Jiang et al. Nat Methods 2021

DoRothEA

 The prediction of transcription factor (TF) activities from the gene expression of their targets (i.e., TF regulon)

Garcia-Alonso et al. Genome Res. 2019

DecoupleR

 R interface to statistical methods to infer biological activities/extract biological signatures integrating omics data (e.g. RNA-seq) with prior knowledge.

Pathway (and network) analysis

Pathway analysis

- over representation
- mapping gene expression to pathway

Interaction network (direct or indirect interactions)

- from protein-protein interaction databases (HPRD, IntAct)
- known and predicted functional association (STRING)

De novo network construction

- co-expression network
- reversed engineering

Classification

Methods for classification

- K-nearest neighbors
- Linear Models
- Discriminant analysis
- Logistic Regression
- Naïve Bayes
- Decision Trees
- Random Forests
- Support Vector Machines

Linear and logistic regression

Support vector machines (SVM)

A SVM tries to find an optimal hyperplane that separates all training samples correctly and maximaizes the margins. If this is not possible in the input space (e.g. 2 dimensions) a hyperplane can be found in the higher dimensional features space (e.g. 3 dimensions).

Receiver operator characteristics (ROC)

Holdback cross validation

To avoid overfitting data should be splitted into training and test set

K-fold cross validation

Survival analysis

Survival analysis involves the modelling of time to event data, which is in the context of biostatistics time to death or other events (time to relapse, time to re-hospitalization).

In other disciplines this type of analysis is also known as reliability analysis (engineering) or duration analysis (economics).

The aim is to statistically describe survival times and compare survival times of several groups (the longer the survival times the better the therapy).

It is also sometimes important to find relations between survival times and other explaining variables (age, type of therapy, severity of disease,...).

Censored data

Censored data (incomplete follow up) arises when a study is finished before all patients died (withdrawn alive).

Another case is when patients have to be excluded from the study due to other reasons (emigration, accidental death).

In general patients are recruited to the study at different time points (e.g. time point of surgery, indicated here as time=0).

Survival function

If X is a continuous random variable with a cumulative distribution function F(t) of survival times the survival function is defined as:

$$S(t) = P(T > t) = \int_t f(u) du = 1 - F(t)$$

The survival function S(t) shows the proportion of patients (probability), which survived a specified time interval t.

The survival function follows often a Weibull $e^{-(t/\lambda)^k}$ or Exponential $(e^{-(t/\lambda)})$ distribution.

Kaplan-Meier survival curves

The survival function can be estimated by the Kaplan-Meier curves (Kaplan-Meier estimator)

Each event(death) is indicated by a step function and censored data are indicated by (+).

Kaplan-Meier estimator

The calculation of the Kaplan-Meier estimator is using the conditional probability.

The probability of surviving 100 days would than be $p = p_1 \times p_2 \times ... \times p_{100}$.

In general:

$$p_k = p_{k-1} \frac{r_k - f_k}{r_k} \Rightarrow \hat{S}(t) = \prod_{t_k \leq t} (1 - \frac{f_k}{r_k})$$

where r_k is the number of subjects still at risk (still being followed up) immediately before the *k*th day, and f_k is the number of observed events on day *k*.

The standard error of the survival proportion (not for small and very large sample size) can be calculated:

$$SE(p_k) = p_k \sqrt{(1 - p_k)/r_k}$$
 and 95% CI: $p_k \pm 1.96SE(p_k)$

Comparison of Kaplan-Meier curves

Log-rank test

The most common (non-parametric) method of comparing independent groups of survival times is the logrank test.

The null hypothesis here is that the groups come from the same population.

The survival times of both groups were ranked together and time intervals were defined between the survival times including the time of one (or more) event(s) as the upper limit of the intervals.

For each time interval we have a 2×2 table:

	group 1	group 2	total
events	f ₁	f_2	f
no events	$r_1 - f_1$	$r_2 - f_2$	<i>r</i> – <i>f</i>
total	<i>r</i> ₁	<i>r</i> ₂	r

Log-rank test

For the number of observed and expected events we get $O_i = \sum_{j=1}^k f_j^j$ and $E_i = \sum_{j=1}^k r_j^j f^j / r^j$ for *k* time intervals, and the test statistic $X^2 = \sum_{i=1}^m \frac{(O_i - E_i)^2}{E_i}$ for *m* groups. Under the null hypothesis the statistic X^2 has a χ^2 distribution with df = m - 1.

Hazard ratio (HR)

The logrank test is solely a hypothesis test, comparing survival in two or more groups.

Relative survival in two groups can be measured by comparing the observed number of events with the expected numbers.

The hazard ratio is defined as

$$R=\frac{O_1/E_1}{O_2/E_2}$$

and gives an estimate of relative event rates in the two groups. $K = \frac{O_1 - E_1}{V}$ is an estimate of the log hazard ratio (ln *R*). $SE \approx \frac{1}{\sqrt{V}}$ and 95%*CI* : $K \pm 1.96/\sqrt{V}$.

Relative risk and proportional hazard model

When a population is divided into 2 subpopulations exposed (E) and non-exposed (\overline{E}) by presence or absence of a certain characteristic (an exposure such as smoking), each subpopulation corresponds to a hazard function and the relative risk can be assigned to

$$RR = \frac{h(t, E)}{h(t, \bar{E})}$$

If RR(t) = c we have a proportional hazards model:

 $h(t,E) = c \times h(t,\bar{E})$

Cox regression

Since we have a multiplicative model (exposure raises the risk by a multiplicative constant) it can be also expressed as

 $h(t) = h_0(t)e^{\beta x}$ with $h_0(t) = h(t, \overline{E})$ and

the covariate x = 1 for exposed and x = 0 for unexposed population.

The Cox regression model is considering several independent variables of interest $(X_1, ..., X_p)$:

$$h(t) = h_0(t)e^{\beta_1 x_1 + \dots \beta_p x_p}$$

Adding all the hazards up to time t to get the risk of dying between time 0 and time t gives the cumulative hazard

 $H(t) = H_0(t) e^{\beta_1 x_1 + \dots \beta_p x_p}$

Cox regression

The survival probability can be estimated for any individual with specific values of the variables in the model

 $S(t) = e^{-H(t)}$

A positive sign of the regression coefficient means that the hazard is higher and thus the prognosis worse for subjects with higher values of this variable.

Interpretation of an individual regression coefficient for two different values of the covariate x by the hazard ratio:

$$\frac{h_1(t)}{h_2(t)} = \frac{h_0(t)e^{\beta x_1}}{h_0(t)e^{\beta x_2}} = e^{\beta x_1 - \beta x_2} = e^{b(x_1 - x_2)}$$

In the special case of a binary variable the hazard ratio is e^{β} .

A prognostic index can be defined as previously:

$$PI = \beta_1 x_1 + ... \beta_p x_p \Rightarrow S(t) = e^{-H_0(t)e^{Pt}} = S_0(t)^{e^{Pt}}$$