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ABSTRACT

Motivation: Time series expression experiments are an increasingly

popular method for studying a wide range of biological systems. Here

wedevelopedanalgorithmthatcan infer the localnetworkofgene–gene

interactions surrounding a gene of interest. This is achieved by a

perturbation of the gene of interest and subsequently measuring the

gene expression profiles at multiple time points. We applied this

algorithm to computer simulated data and to experimental data on a

nine gene network in Escherichia coli.

Results: In this paper we show that it is possible to recover the

gene regulatory network from a time series data of gene expression

following a perturbation to the cell. We show this both on simulated

data and on a nine gene subnetwork part of theDNA-damage response

pathway (SOS pathway) in the bacteria E. coli.

Contact: dibernardo@tigem.it

Supplementary information: Supplementary data are available at

http://dibernado.tigem.it

1 INTRODUCTION

Recent developments in large-scale genomic technologies, such as

DNA microarrays and mass spectroscopy have made the analysis

of gene networks more feasible. However, it is not obvious how the

data acquired through such methods can be assembled into unam-

biguous and predictive models of these networks. Different experi-

mental and computational methods have been proposed to tackle

the network identification problem (Tong et al., 2002; Lee et al.,
2002; Ideker et al., 2001; Davidson et al., 2002; Arkin et al., 1997;
Yeung et al., 2002). Although implemented with some success, they

are data intensive and they may require a certain degree of a priori

information.

A variety of mathematical models can be used to describe

genetic networks (de Jong, 2002; Savageau, 2001; Levchenko

and Iglesias, 2002), including Boolean logic (Shmulevich et al.,
2002; Liang et al., 1998), Bayesian networks (Hartemink et al.,
2002), graph theory (Wagner, 2001) and ordinary differential equa-

tions (Tegner et al., 2003). We concentrated our efforts on the last

method as it offers a description of the network as a continuous time

dynamical system that can be used to infer the genes with the major

regulatory functions in the network.

In a recent study (Gardner et al., 2003), we developed an

algorithm (Network Identification by multiple regression—NIR)

that used a series of steady state RNA expression measurements,

following transcriptional perturbations, to construct a model of a

nine gene network that is a part of the larger SOS network in E. coli
(Gardner et al., 2003). Though the NIR method proved highly

effective in inferring small microbial gene networks, it requires

prior knowledge of which genes are involved in the network of

interest, and the perturbation of all the genes in the network via

the construction of appropriate episomal plasmids. In addition, it

requires the measurement of gene expressions at steady state

(i.e. constant physiological conditions) after the perturbation.

This experimental setup is challenging for large networks, it is

not easily applicable to higher organisms, and, most importantly,

it is not applicable if there is no prior knowledge of the genes

belonging to the network.

In this paper we are presenting an algorithm TSNI (Time Series

Network Identification) that can infer the local network of gene–

gene interactions surrounding a gene of interest by perturbing only

one of the genes in the network. To this end, we need to measure

gene expression profiles at multiple time points following perturba-

tion of the gene, or genes, of interest.

We investigated the effect of noise and a limited number of data

points on the performance of the algorithm, and we devised tech-

niques to overcome these problems.

Our algorithm is illustrated and tested in silico on computer

simulated gene expression data and applied to an experimental

gene expression data set obtained by perturbing the SOS system

in the bacteria E. coli.
The novelty of our approach is in the idea of a gene-

centric inference method that can be applied to infer the regulatory

interactions of a gene of interest. State-of-the-art inference

algorithms start from the assumption that a gene network is

unknown and experiments are performed to perturb it. Gene exp-

ression data are then used to reconstruct the network. In a real

life situation, large-scale gene expression data from a given cell

type involve thousands of responsive genes and there are many

different regulatory networks activated at the same time by the

pertrubations. In this case, inference methods can be successful

but only on a subset of the genes (i.e. a specific network) (Basso

et al., 2005). This subset of genes (network), however, cannot

be defined a priori but depends on the data set. Networks

involving genes that never change in the dataset cannot be inferred.

We aim at developing an integrated experimental and com-

putational approach to infer the network of a specific gene of

interest.�To whom correspondence should be addressed.
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2 METHODS

2.1 Network model description

Our model is based on relating the changes in gene transcript concentra-

tion to each other and to the external perturbation (as shown in Fig. 1). By

external perturbation we mean an experimental treatment that can alter the

transcription rate of the genes in the cell. An example of perturbation is the

treatment with a chemical compound, or a genetic perturbation involving

overexpression or downregulation of particular genes. We use the following

system of ordinary differential equations (de Jong, 2002) to represent the

rate of synthesis of a transcript as a function of the concentrations of

every other transcript in a cell and the external perturbation:

x
·
i ðtkÞ ¼

XN
j¼1

aijxjðtkÞ +
XP
l¼1

bilulðtkÞ‚ ð1Þ

where i ¼ 1 . . .N:k ¼ 1 . . .M, xi(tk) is concentration of transcript i measured

at time tk; x
·
i ðtkÞ is the rate of change of concentration of gene transcript i at

time tk, i.e. the first derivative of the mRNA concentration of gene imeasured

at time tk; aij represents the influence of gene j on gene i with a positive, zero

or negative sign indicating activation, no interaction and repression, respect-

ively, bil represents the effect of 1th pertrubation on xi and ul(tk) represents
the lth external perturbation at time tk.

Equation (1) at time tk can be rewritten in a more compact form using

matrix notation

X
·

ðtkÞ ¼ A XðtkÞ + B UðtkÞ k ¼ 1 . . .M‚ ð2Þ

where X(tk) is an N · 1 vector of mRNA concentration of N genes at

time tk, X
_ ðtkÞ is a N · 1 vector of the first derivatives of X at time tk, A

is a N · N connectivity matrix, composed of elements aij, B is a N · Pmatrix

representing the effect of P perturbations on N genes, U(tk) is P · 1 vector

representing P perturbations at time tk and M is the number of time points

tk in the time series experiment. The unknowns to calculate are the con-

nectivity matrix A and matrix B. Element (i, l) of B will be different

from zero if the i-th gene is a direct target of the l-th perturbation.

2.2 TSNI Algorithm

The TSNI algorithm identifies the network of the genes (A) as well as the

direct targets of the perturbations (B). To identify the network means to

retrieve A and to identify the direct targets of the drugs means to identify B,

by solving Equation (2). Solving this equation is possible only ifM� N + P.

Since usually we have less data points (time points) than the number of

genes, we cannot solve Equation (2) directly. A solution can be found either

by increasing the number of data points artificially by interpolation or

by dimensional reduction techniques. In our algorithm we apply both

approaches to the dataset: first, we apply a cubic smoothing spline filter

with an adjustable smoothing parameter (de Boor, 2001). This smoothing

filter reduces the fluctuations in the data introduced by noise. Second we

increase the number of time points by interpolating the smoothed data using

piecewise cubic spline interpolation. Third, we apply Principle Component

Analysis (PCA) to the dataset in order to reduce its dimensionality and solve

the equation in the reduced dimension space as described below.

To solve Equation (2) we need the first time derivative of gene expression

profile. Since the data are noisy, taking derivatives will further increase the

noise level. In order to avoid this problem we convert Equation (2) to its

discrete form (Ljung, 1999).

Xðtk+1Þ ¼ Ad � XðtkÞ + Bd � UðtkÞ‚ ð3Þ

where Ad is the network in the discrete space, which is different from A

(Ljung, 1999) and Bd is discrete counterpart of B. Rewriting Equation (3)

Xðtk+1Þ ¼ ½Ad Bd � � XðtkÞ
UðtkÞ

� �
ð4Þ

which can be written for all time points;

X ¼ H � Y‚ ð5Þ

where

H ¼ ½Ad Bd �

and

Y ¼ X
U

� �
:

Dimensions of X, U, H and Y are N · (M� 1), P · (M� 1), N · (N+P) and

(N+P) · (M� 1), respectively. We apply the PCA to reduce the dimension

of Equation (5) by decomposing Y using singular value decomposition (Lay,

2002)

X ¼ H � V � D � T0‚ ð6Þ

where columns V are left singular vectors, rows of T0 are right singular

vectors and D is a diagonal matrix of singular values arranged in descending

order. Choosing the top k singular values, we can write

X ¼ Zd � YR; ð7Þ

where Zd is obtained by taking first k columns of H � V and YR is the data

in the reduced dimension obtained by taking the first k rows of D � T0. The
solution is obtained by taking pseudo-inverse of Y to obtain

Zd ¼ X � YT
R � ðYR · Y

T
RÞ

�1 ð8Þ

We then project the solution Zd obtained in the reduced dimension space to

the original dimension space using matrix V (Montgomery et al., 2001) to get
Ad and Bd. In order to compute the continuos network model A and con-

tinuous form of B from its discretized form Ad and Bd respectively, we apply

the following bilinear transformation (Ljung, 1999):

A ¼ 2

dt

Ad � I

Ad + I
ð9Þ

B ¼ ðAd + IÞ�1 � A � Bd‚ ð10Þ

Fig. 1. Overview of the methodology used to infer the network.
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where I is the square identity matrix of dimension N · N and dt is the

sampling interval. The transformation from discrete to continuous model

is an important step. All the work presented in the literature till now is based

on the discrete time model even if the dynamics of gene regulation is

continuous in time.

2.3 Simulated gene expression data

Before applying the algorithm to the real dataset, we tested its performance

on simulated datasets. We tested the performance on two different simulated

datasets, one corresponding to a set of small gene networks with 10 genes

and another one corresponding to larger networks with 1000 genes. To test

the performance of TSNI on both these networks with 10 and 1000 genes, we

generated 100 random networks with an average of 5 and 100 connections

per gene, respectively. Each network was represented by a full rank sparse

matrix A (N · N) with eigenvalues with a real part less than 0 (Ljung, 1999)

to ensure the stability of the dynamical systems, i.e. all the gene mRNAs

reach an equilibrium between their transcription rate and degradation rate

after a given time period. We applied P ¼ 1 perturbations to each network.

For networks of 10 genes, we perturbed 1 gene, while for networks of

1000 genes, we performed two sets of perturbations, one in which we per-

turbed only 1 gene and the other in which we perturbed 100 genes simul-

taneously. The information of which gene is perturbed is contained in B
(N · 1). B has all its elements equal to 0 except for the genes that are the

direct target of the perturbation. U (1 · M) contains the information about

what kind of perturbation is applied. In our simulation we applied a constant

perturbation, so all elements of U are kept constant (1 in our simulation).

The simulated gene expression profile dataset X ¼ jXðt1Þ, . . . ‚XðtkÞ j was

obtained using lsim command in MATLAB [see supplementary of Gardner

et al. (2003) for more details of how to obtain simulated gene expression

profile] by solving

X
·

¼ AX + BU‚ ð11Þ

where X (N · M) is the response of the N genes at M time points following

the perturbation. The end time te of the simulated time series was chosen

equal to four times the inverse of the real part of the smallest eigen value of

A (Ljung, 1999). This ensures that at time te all the genes are close to their

steady-state values. We then selected 5 and 10 time points for the 10 and

1000 gene networks, respectively. These time points were equally spaced

from the start time ts to the end time te. White Gaussian noise was added

to the data matrix with zero mean and varying the standard deviation from

s¼ 0 � ||X|| to s¼ .50 � ||X||, with an interval of 0.1, where ||X|| represents the
absolute values of the elements of X (Gardner et al., 2003). The simulated

gene expression time courses are then filtered using the smoothing algorithm

described in (de Boor, 2001) with a default parameter of 0.8. Smoothing is

widely used in signal processing to remove outliers, if any, from the time

course, to reduce the measurement noise, and, to increase the number of data

points via interpolation. However, to our knowledge, it has never been

applied on time series gene expression data.

2.3.1 Assessing the performance of the algorithm.

� Gene regulatory network: Matrix A^ inferred by the TSNI algorithm has

N · N elements describing the regulatory influences among the N genes

in thenetwork. In the recoverednetworkall the elements are non-zero.To

make the network sparse (Gardner et al., 2003), we set the smallest

h elements in A^ to zero. We calculated the ratio, rz, of number of

correctly identified zero coefficients in the recovered A^ to the number

of zero elements in the original A and the ratio, rnz, of total number of

non-zero elements in the recovered A^ whose signs are in agreement

with the signs of non zero elements in the original A. We varied h

from 0 to the number of elements in A^, and calculated rz and rnz for

each h.

� Direct targets of the perturbations: Matrix B^ inferred by the algorithm

has N · 1 elements that describe the direct targets of the perturbation.

In the recoveredB^, all the elements are non zero.We sort all the elements

of B^ according to their absolute values and selected the top h largest

elements and set remaining N� h elements to zero. Once the N� h

elements of B^ are set to 0, to assess how well the algorithm can infer

the direct targets of perturbation,we defined as True Positives (TP) those

elementsb^ i of the inferredB
^ that are different from0and that are non-zero

in the originalB. Similarly False Positives (FP) are all the elements b^i that

are different from 0 while the original bi are 0. Analogously, we defined
the False Negatives (FN) and True Negatives. We measured the overall

performance by computing the positive predictive value (PPV) TP
ðTPþFPÞ

and sensitivity TP
ðTPþFNÞ by varying h from 1 to N.

2.4 Experimental methods

2.4.1 Growth conditions and E.coli treatment. The bacterial strain

MG1655 was grown over night in 5 ml LB amp 100 mg/ml with shaking

(300 r.p.m.) at 37�C. The time course experiment consisted in the induction

with 10 mg/ml of Norfloxacin and extraction of the total RNA at the

following time points: 0, 12, 24, 36, 48 and 60 min from the drug treatment.

Each experiment was done in triplicate; positive controls were done at 24 and

60 min from the induction with Norfloxacin.

2.4.2 Preparation of E. coli for hybridization to
Affymetrix Chips

� RNA extraction: Cultures were centrifuged at 3000 r.p.m. for 5 min

at 4�C, the pellets were re-suspended in RNA protect and incubated

for 10 min at room temperature. The RNA protect is completely poured

off and the cells pellets were frozen at�80�C. RNA was prepared using

the spin protocol for the RNAeasy 96 kit (Qiagen on Column Dnase

digestion).

� cDNA synthesis: For each sample reverse transcription of RNA was

performed using First Strand cDNA kit according to manufactuter’s

instructions. The RNA was degraded by the addition of 1 M NaOH

and heating to 65�C for 30 min. The reactions were neutralized with

1 M HCl. The reactions were purified using Qiagen QIAquick columns

following the manufacturer’s protocol. The DNA was eluted from the

columns with 40 ml of EB buffer. To digest any genomic DNA present in

the samples, 3 mg of each cDNAwas fragmented by combining with the

following 10· One-Phor-All Buffer, 1 U/ml DNase I, in a final volume

of 50 ml H2O. The reactions were incubated in a thermocycler at 37�C
for 10min without the hot top, followed by inactivation of the DNase I at

98�C for 10 min.

� cDNA labeling and hybridization: The fragmented cDNAs were

end-labeled using an Enzo BioArray Terminal Labeling Kit with

Biotin-ddUTP. To each tube of fragmented cDNA the following was

added:5· reactionbuffer, 10·CoCl2,100·Biotin-ddUTP,50·Terminal

Deoxynucleotide Transferase in a final volume of 100 ml H2O. The
reactions were incubated in a heatblock at 37�C for 1 h 15 min. The

reactions were quenched with the addition of 2 ml 0.5 M EDTA, pH 8.0,

according to manufacturers instruction. A 3 ml aliquot was taken from

each tube and dried. A 2mg/mLNeutrAvidinwas added to each tube and

incubated at room temp for 5 min. The conjugates along with an addi-

tional 3 ml of the labled cDNA were electrophoresed on 3% non-

denaturing agarose, 1· TAE gels at 250 V for 20 min. The gels were

stained with a solution of 0.1% SYBR Gold in 1· TEA for 25 min then

imaged.The fragmented, labeledcDNAswereprepared forhybridization

bycombiningwith the following: cDNA,2·Hybridizationbuffer, 50mg/

ml acetylated BSA, 10 mg/ml Herring Sperm DNA, 3 nMControl Oligo

B2, Agent-X in a total volume of 200 ml. The mixtures were loaded on

each chip and hybridized overnight at 45�C and 60 r.p.m. Following a

Time series gene network inference
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minimum of 15 h of hybridization, the chips were stained and scanned

according to Affymetrix protocols.

2.4.3 Microarray data analysis. We processed the microarray data

using the rma command of the Bioconductor package that performs

normalization and gene expression estimation from replicates using the

algorithm described by Gautier et al. (2004). By calculating the mean

(m) and standard deviation (s) on the three replicates of each time point,

we found that the noise level in our experiment is �13% (m
s
¼ 0:13).

3 RESULTS

3.1 Choosing the parameters of the model

In order to set the best value for the number of interpolated points

and the number of principle components, we applied the TSNI

algorithm to each simulated dataset and varied: (1a) the number

of interpolated data point ranging from 0 (no interpolation) to 10·M
(10 times the number of experimental points in the time series);

(2b) the number of principle components from 1 to min (N, M)

(minimum of the number of genes in the network or the number of

time points). For each of these parameters, we calculated the

average of rnz vs rz across 100 random systems by varying h
from 0 to the number of elements in A^ and plotted rnz vs rz. Ideally,
when we increase the number of nonzero elements in A^ by varying h,
we should start identifying non-zero elements correctly with zero

false positives, which will keep the value of rz equal to 1 and

increase rnz from 0 to 1. The best value of h will correspond to

that value where both rz and rnz equal one. At the point when A^ is
fully connected we should have rnz equals 1 and rz equals zero. We

selected as the best set of parameters, the ones that gave the

maximum area under the rnz versaus rz curve (since we have one

of such curves for each parameter value that we explored).

3.2 Result on simulated 10 gene network

To select the best set of parameters, we plotted the area under

rnz versus rz curve for all the set of parameters. First we plotted

the area under rnz versus rz curve for different interpolation levels

and different principle components for various noise levels (see

Figure 1S for 0% noise level and Figure 2S for 10% noise level

in supplementary). These plots shows that double interpolation

(two times the number of data points in the time series) works

best. Once the interpolation is decided, we then plotted the area

under rnz versus rz curve for different noise level and different

principle components (see fig 3S in supplementary) after fixing

the interpolation to two times. From this we found that if the

noise level is very low, then three principle components work

best. At 10% noise level, two principle components work better,

whereas at higher noise levels only one principle component works

well. This is to be expected, since higher principle components

capture also the noise signal, whereas most of the information is

captured in lower components. We therefore selected double

interpolation and two and three principle components for our

study, as we know that the noise level in our real data is �13%

(see Section 2.4.3).

Figure 2 shows the plot for average of rnz versus rz across

100 random networks for double interpolation and three principle

components at various noise level. The dash dotted line shows the

performance when we select the connections in the network

randomly. The performance of the algorithm decreases clearly

Fig. 2. Plot of average of rnz vs rz across 100 random system for double interpolation obtained the simulation. Different curves are different noise levels. Dash

dotted curve is the performance which is obtained by building the connections in the network randomly. rz¼ 1 line corresponds to the ideal curve.
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with increasing noise levels. We also checked how well we can

recover B^ (graph not shown here) and the result shows that we can

predict the targets of the perturbation with a sensitivity of 99% with

96% PPV, i.e. 96% of the times we were able to tell correctly the

correct target without any false positives.

3.3 Result on simulated 1000 gene network

3.3.1 Results on inferring network (ÂA) On larger networks of

1000 genes the performance of our algorithm in recovering the A^

matrix is not very good and infact rnz versus rz curve overlapped the
random curve. This happened because the network is not fully

observable and one experiment does not yield sufficient information

to infer the network. To check whether we can infer the local

network around a gene of interest, we selected the column corres-

ponding to the perturbed gene in the simulation in which we per-

turbed only one gene, and compared it with the corresponding

column in the original network A. This corresponds to infer the

genes that are directly regulated by the perturbed gene. In Figure 3

we computed the PPV and sensitivity in the same way as described

above when assessing the performance in getting the direct targets

of the perturbation (Section 2.3.1). We found that for double inter-

polation and 1 principle components (which is found again by the

checking the set of parameters which gives the maximum area under

ppv vs sensitivity curve for all set of parameters) at 10% noise we

get 75% sensitivity with almost 100% PPV. PPV decreases to 90%

at 50% noise level, i.e. if the gene regulates 100 different genes and

algorithm predicts 75 genes as direct target then all of them are real

at 10% noise and 68 of them are real at 50% noise. The horizontal

dash dotted line at the bottom of Figure 3 shows the performance if

we select the genes randomly without using any prediction

algorithm.

3.3.2 Results on inferring the targets of perturbation (B̂B) We

then checked also how good is algorithm in predicting the targets

of a perturbation (B). To this end, we performed the simulation by

perturbing 100 genes simultaneously (see Section 2.3). We found

again the best set of parameters using ppv vs sensitivity plot by

comparing original B and the recovered B^. We found that double

interpolation and one principle component work best. The result

shows (Fig. 3 inset) that up to 50% sensitivity we predict the targets

with almost 100% PPV at 10% noise, and 95% PPV at 50% noise.

This shows that TSNI is very good in predicting the local network

around the perturbed gene, if we perturb only one gene. If we treat

the cells with some drug, which has multiple gene targets, then

TSNI can also find them with a very good ppv.

3.4 Results on E.coli

3.4.1 Results on inferring the network (ÂA) We applied our TSNI

algorithm to a nine gene network, part of SOS network in E. coli.
Genes are the same as the ones we used in our previous work

(Gardner et al., 2003) in order to see how well we can replicate

the results. To this end we computed the average of the three rep-

licates for each time point following treatment with Norfloxacin, a

Fig. 3. Plot of PPV versus sensitivity for 1000 genes networkwhen predicting genes directly regulated by the perturbed gene (column ofA^). Two different curves

for 10 and 50% noise level are shown. The dash dotted horizontal line at the bottom shows the curve when we select the genes randomly. In the inset, is the PPV

versus sensitivity curve for the prediction of targets of perturbation for 1000 gene network (B^).
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known antibiotic that acts by damaging the DNA. In order to assess

the performance of the algorithm on this experimental data, we

compared the inferred network with the one we identified in our

previous work (Gardner et al., 2003) and with a literature survey of
the known interactions among these nine genes (Fig. 4). We found

43 connections, apart from the self-feedback, between these genes

that are known in literature. The network obtained by the algorithm

for the E. coli time-series data for three principle components and

double interpolation is shown in Table 1. We compared this pre-

dicted network with known connections from the literature and

plotted rnz versus rz (Fig. 5). The cross on the plot shows the

value of rnz and rz which is obtained by comparing the network

predicted in our previous work (Gardner et al., 2003) with the

network from the literature. NIR found 22 connections correctly

out of 43 known connections. The result of our present study is

similar to our previous work, even if we used only a single per-

turbation experiment and 5 time points as compared to our previous

work in which we used nine different perturbation experiments and

we also assumed the matrix B to be known.

When we used the information that there should be five connec-

tions for each gene, [from our previous work (Gardner et al.
(2003))], and set four elements in each row of the inferred matrix

ÂA to zero, then our algorithm finds 20 connections correctly

(diamond in Fig. 5).

3.4.2 Results on inferring the targets (B^) To check the predic-

tion of B, we considered the treatment of E.coli with Norfloxacin

equivalent to the a perturbation to recA. Norfloxacin is a member of

fluoroquinolone class of antimicrobial agents that target the proka-

ryotic type II topoisomerase type II (DNA gyrase) and topoi-

somerase IV inducing the formation of single-stranded DNA and

thus activating the SOS pathway via activation of the recAp protein.

Quinolones have been previously demonstrated to induce recA and

other SOS-responsive genes in E.coli. (Phillips et al., 1987). We

checked that we can get recA as the strongest target. This gives

100% value for both positive predicted value and sensitivity, which

shows that TSNI algorithm is very good in predicting drug target,

at least for small network.

We then checked how well we can do if we select a larger dataset

of genes in E.coli. We applied our algorithm to the 300 genes which

statistically responded the to the Norfloxacin treatment. We ordered

the absolute value of all elements in recovered B^ by TSNI and

looked at the top 50 genes (Table 1S in supplementary). We

found that recA was ranked 14 and there were 9 genes which belong

to SOS pathway in the top 50 genes.

3.5 Comparison with Dynamic Bayesian Network

We then compared our algorithm with Dynamic Bayesian Network

(DBN), one of the most successful algorithms available now for

time series. The standard DBN (Murphy, 2001) cannot be compared

with our algorithm directly, since DBN infers an undirected network

(i.e. it does not give the sign of the connection in the network), and it

is not able to infer feedback loops. We therefore decided to compare

our work with the work by Yu et al. (2004). In this paper, the authors
developed a generalization of the DBN algorithm to infer directed

networks with feedback loops. The authors then applied their

algorithm on a network of 20 genes and tested its performance

by using different number of data points, ranging from 25 to

5000. Figure 5a in their paper shows that for high number of

data points (>1000), they are able to recover 98% of the connections

in the network correctly, but using lower number number of data

points, their performance quickly decreases. In addition, their per-

formance varies a lot, depending on the number of parents of each

node. When the network is very sparse, i.e. each node has few

parents (1 or 2) it works well, but when the network becomes

dense, with three or more parents per node then the performance

decreases a lot. In our dataset, we assumed only 5 data points for a

10 gene network. In addition, we assume that the network is not very

sparse and has five parents for each node (Gardner et al., 2003). For
this dataset, therefore, the performance of the algorithm of Yu et al.
(2004) is equivalent to the random algorithm.

4 DISCUSSION

In this pilot study we investigated the possibility of inferring the

local network of regulatory interactions surrounding a gene of

interest when there is no a priori knowledge of the genes belonging

to network, nor about the structure of the network. We found that by

perturbing a gene of interest and measuring the response of the

genes following the perturbation, it is possible to partially recon-

struct the regulatory network. Our approach confirmed many of the

known information from literature about different interactions in

the SOS network. We propose a robust method that allows to infer a

continuous-time model of a gene network from time series data

without requiring the estimation of the first derivatives, thanks to

the use of the bilinear transformation. We also show that smoothing

is a very powerful technique to reduce the noise in the data and

should be used prior to interpolation.

The TSNI algorithm could be a powerful methodology for the

drug discovery process since it would be able to identify the com-

pound mode of action via a time-course gene expression profile. We

have already shown in a recent study (di Bernardo et al., 2005),
using a different approach that requires large collection of whole-

genome gene expression profiles in yeast, that it is possible to infer

compound mode of action by analyzing transcriptional response

Fig. 4. Gene-gene interaction between the nine genes of SOS network

in E.coli known in literature. Positive interactions are shown as line, and

negative interactions are shown as dotted line.
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even when the compound does not directly affect the transcrip-

tional response.

Our model is scalable to large networks, thanks to the

dimensional reduction and smoothing and interpolation, and to

the reduced number of experiments it requires, since only one

perturbation experiment is necessary. We are currently applying

the algorithm to infer a network from whole genome time series

microarrays in mammalian primary cells.

There are two main innovative aspects in our algorithm: (1)

we propose an experimental and computational methodology

to infer the gene regulatory network from time expression

data in which a specific gene of interest is present. This can

be achieved either by directly perturbing the gene using an

inducible vector for its overexpression or downregulation, or

through a compound known to activate the pathway of interest

(i.e. Norfloxacin to activate the SOS-pathway as shown in this

paper); (2) the approach can be used to speed up the drug

discovery process, in that, it is able to predict for an unknown

compound, its direct molecular targets from gene expression

data following treatment. Importantly, our algorithm requires a

limited amount of data as compared with Dynamic Bayesian

network and Bayesian network. These methods are very powerful

when large number of data points are available. In addition, to

our knowledge, DBN and BN have never been applied to

Table 1. The SOS network for E.coli obtained by TSNI algorithm

recA lexA Ssb recF dinI umuDC rpoD rpoH rpoS

recA �1.2436 �0.2937 �1.3958 1.7862 0.1864 �0.3994 1.0770 0.3188 �1.7990

lexA 0.5260 �3.8494 0.1855 0.1814 0.4144 0.1139 0.3016 0.0215 0.0030

Ssb 0.3046 0.3180 �3.2623 0.2029 0.4980 0.2223 0.7421 0.2047 0.7331

recF 0.8962 �0.4283 �0.9027 �2.5483 �0.9168 �0.5607 1.2184 0.6924 �0.3771

dinI 1.8592 0.2694 �0.0876 0.4730 �2.7953 0.2360 0.3258 �0.1914 �0.8924

umuDC 0.4951 0.0905 �0.0058 0.0599 0.3861 �3.9094 0.0095 �0.0987 �0.2706

rpoD 1.0374 �0.3098 �0.4930 1.8567 �0.9117 �0.5429 �1.9702 1.0397 0.2742

rpoH 0.0162 �0.2580 �0.3403 0.7112 �0.7695 �0.3402 0.7250 �3.5191 0.1869

rpoS �0.6059 0.0649 0.6377 0.3339 �0.4751 �0.0594 0.9743 0.5517 �2.6977

Fig. 5. Plot of average of rnz versus rz obtained by comparing the predicted network of nine genes in SOS network and the network obtained from literature. Cross

(X) corresponds to the value of rz and rnz obtained by comparing network obtained in our previous work with the network obtained from literatue. Diamond ()

corresponds to the performancewhenwe used the information fromour previouswork (Gardner et al., 2003) that each gene is connectedwith other five genes and

set four weakest connection in each row of A^ to zero. rz¼ 1 line corresponds to the ideal curve.
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infer the targets of a compound or of perturbation from gene

expression data.
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