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A cell atlas foundation model for scalable 
search of similar human cells

Graham Heimberg1,2,7 ✉, Tony Kuo3,7, Daryle J. DePianto2, Omar Salem1, Tobias Heigl2, 
Nathaniel Diamant1, Gabriele Scalia1, Tommaso Biancalani1, Shannon J. Turley2,4, 
Jason R. Rock2,4, Héctor Corrada Bravo1, Josh Kaminker5,8 ✉, Jason A. Vander Heiden1,2,8 ✉ & 
Aviv Regev6,8 ✉

Single-cell RNA sequencing has profiled hundreds of millions of human cells across 
organs, diseases, development and perturbations to date. Mining these growing 
atlases could reveal cell–disease associations, identify cell states in unexpected 
tissue contexts and relate in vivo biology to in vitro models. These require a common 
measure of cell similarity across the body and an efficient way to search. Here we 
develop SCimilarity, a metric-learning framework to learn a unified and interpretable 
representation that enables rapid queries of tens of millions of cell profiles from 
diverse studies for cells that are transcriptionally similar to an input cell profile or 
state. We use SCimilarity to query a 23.4-million-cell atlas of 412 single-cell RNA- 
sequencing studies for macrophage and fibroblast profiles from interstitial lung 
disease1 and reveal similar cell profiles across other fibrotic diseases and tissues. The 
top scoring in vitro hit for the macrophage query was a 3D hydrogel system2, which 
we experimentally demonstrated reproduces this cell state. SCimilarity serves as a 
foundation model for single-cell profiles that enables researchers to query for similar 
cellular states across the human body, providing a powerful tool for generating 
biological insights from the Human Cell Atlas.

Over 100 million individual cells have been profiled using single-cell 
(scRNA-seq) or single-nucleus (snRNA-seq) RNA-sequencing analysis 
across homeostatic, disease and experimentally perturbed conditions3. 
By comparing cell profiles from hundreds of studies, researchers can 
connect cell states across different developmental stages, tissues or 
diseases, or between the human body and in vitro laboratory mod-
els. Despite this promise and rapid data growth, current models were 
not designed to search for similar cell profiles in massive corpora, 
and cross-dataset, pan-body, analyses are hampered by challenges in 
dataset curation and harmonization, difficulty in defining a common 
low-dimensional representation between datasets, lack of principled 
metrics to compare between cell profiles and no methods to search for 
complete cell profiles. As a result, most aggregation efforts have been 
limited in scope, with a few recent exceptions4–7.

To leverage and query the massive scale and richness of single-cell 
atlases, we need (1) a foundation model of cell states with an effec-
tive representation for single-cell profiles usable across applications 
without retraining; and (2) a measure of cell similarity that is robust to 
technical noise, scales to hundreds of millions of cells, and generalizes 
to datasets and cell states not observed during training. Unsupervised 
methods, such as principal component analysis or autoencoders8–11, 
faithfully preserve information from the input8–11, but do not learn 
universal features that encode cells and the similarity between cells 

needed to query new datasets. Conversely, other machine-learning 
methods, especially in image processing, have successfully learned 
representations of diverse entities and their similarity. In particular, 
metric-learning models for facial recognition are trained to embed 
images into a low-dimensional space where images of the same person 
are closer than images of different people12. Users query-trained models 
with an image not in the training set to find additional images that are 
nearby in the embedding and depict the same person. Analogously, 
metric learning could provide a meaningful metric for the similar-
ity between cells, by training a model using annotated sc/snRNA-seq 
data to learn a low-dimensional representation that places similar cell 
profiles near each other and dissimilar ones farther apart. If learned 
from a sufficient diversity of cell profiles, such a representation should 
provide a foundation model of cells that allows efficient searches for 
cells with similar expression states (Fig. 1a).

Here we introduce SCimilarity—a deep-metric-learning founda-
tion model that quantifies similarity between single-cell profiles and 
provides a single-cell reference to query for comparable cell states 
across tissues and diseases. We illustrate the power of SCimilarity by 
searching a learned reference of 23.4 million cells with query profiles 
of macrophage and fibroblast subsets from interstitial lung disease 
(ILD)1, showing how SCimilarity provides a powerful framework for 
scalable cell search across organs, systems and conditions to generate 
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biological insights and experimentally testable hypotheses from the 
Human Cell Atlas.

A similarity metric for scRNA-seq
SCimilarity blends unsupervised representation learning and super-
vised metric learning through simultaneously optimizing two objec-
tives: (1) a supervised triplet loss function, which is used to embed 
expression profiles from matching cell types close together, integrating 
cells of the same type across studies13–15; and (2) an unsupervised mean 
squared error (MSE) reconstruction loss function, which encourages 
the model to preserve variation from the input expression profiles, 
capturing subtler differences in expression patterns within cells of the 
same type (Fig. 1b and Methods). Increasing the relative weight of the 
reconstruction loss improves querying performance, while increasing 

the relative weight of the triplet loss improves performance on dataset 
integration metrics16. We focused on a single (β = 0.001) model that 
best combined query sensitivity and integration performance (below).

We trained SCimilarity with tens of millions of cell triplets sam-
pled from data with author-provided standardized cell type anno-
tations from the Cell Ontology17 (Fig. 1b and Methods). Each triplet 
consists of an anchor, a positive and a negative cell: the anchor and 
positive cells are similar cells (that is, the same cell type) from differ-
ent studies, while the anchor and negative cells are dissimilar (that 
is, different cell types; from the same or a different study). Even with 
standardized Cell Ontology terms, some cell type comparisons are 
ambiguous due to differences in annotation granularity (for example, 
it is ambiguous whether cells annotated as ‘T cell’ in one study and 
‘CD4+ T cell’ in another are similar or dissimilar). SCimilarity therefore 
excludes triplets with positive and negative labels that have a vertical, 
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Fig. 1 | SCimilarity metric learning enables cell search in large human scale 
atlases. a, Cell querying with SCimilarity. Left, a query cell profile is compared 
to a searchable reference foundation model of 23.4 million profiles from  
412 studies. Middle, samples with similar cells are identified and returned with 
information about the original sample conditions, including tissue, in vitro or 
diseases contexts. Right, a SCimilarity score is computed between the query 
cell and each cell within a tissue sample. b, Triplet loss training. Left, 56 training 
and 15 test datasets with Cell Ontology annotations from across the body are 

used as input. Middle, cell triplets are sampled, each consisting of an anchor 
cell (A), a positive cell (P, anchor-similar) and a negative cell (N, anchor- 
dissimilar), based on Cell Ontology annotations. Only non-ambiguous 
relationships are allowed. Right, triplets are used to train a neural network that 
embeds similar cells closer than dissimilar ones, forming a foundation model. 
Treg, regulatory T cells. The loss function is computed using a cell triplet, a 
reconstructed anchor cell profile (Â), and a weighting parameter (β) to  
balance the triplet loss (Ltriplet) and the mean squared error loss (LMSE).
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ancestor-descendant relationship in the Cell Ontology, and learns only 
from cells that are either explicitly similar or unambiguously dissimilar 
(Fig. 1b and Methods). This eliminates the need to manually flatten or 
harmonize every cell type annotation and seamlessly scales the train-
ing set across studies.

Training on a large, diverse atlas
To test the SCimilarity framework, we aggregated sc/snRNA-seq data-
sets across human biology. We focused on studies generated using 
one experimental platform (10x Genomics Chromium droplet-based 
sc/snRNA-seq), mostly sourced from the Gene Expression Omnibus 
(GEO)18 or CELLxGENE19. These data were generated with similar library 
preparation protocols and computational pre-processing pipelines20. 
There were 753 datasets matching our criteria as of 23 March 2021. The 
number of samples and cells matching our criteria has at least doubled 
every 6 months between December 2018 and March 2021 (Extended 
Data Fig. 1a,b). We programmatically downloaded 13,401,599 cell pro-
files from 333 of the studies with their respective GEO metadata and 
unnormalized gene count matrices (Methods and Supplementary 
Table 1), and manually ingested another 66 studies from either CELLx-
GENE19 or other large studies and consortia (Methods) to a corpus of 
412 studies comprising 23,381,150 cells from 5,142 tissue samples with 
184 unique Tissue Ontology terms21 and 132 Disease Ontology terms22 
(Fig. 2, Extended Data Fig. 1c and Supplementary Table 1).

We trained SCimilarity models with a training set of 7,886,247 single- 
cell profiles from 56 studies (46 scRNA-seq and 10 snRNA-seq) with 
203 Cell Ontology author-annotated terms17 (each appearing in at least 
two datasets) (Extended Data Fig. 1d and Supplementary Table 1). We 
sampled 50,000,000 of the most informative cell triplets (Methods) 
weighted by study and cell type (to mitigate dataset size imbalances), 
requiring that the anchor and positive cells in each triplet are from 
two different studies, and using hard triplet mining12, so that only the 
most informative triplets are used when updating model gradients  
(Methods). Cell Ontology annotations are required only in training, 
but using a trained SCimilarity model on new datasets requires neither 
author labels nor fine-tuning. For evaluation, we withheld 15 validation 
studies (13 scRNA-seq and 2 snRNA-seq) from training, comprising 
1,415,962 cells with Cell Ontology annotations (Fig. 2). We excluded 
samples profiling tumours, cell lines or induced pluripotent stem 
cell-derived cells from the training and test sets, because their cell 
identity may be ambiguous.

Loss functions for sensitive cell search
Testing 18 different parameter combinations for SCimilarity’s objective 
function, varying the margin (α) and relative weighting of the recon-
struction and triplet loss functions (β) revealed that the two loss func-
tion components gave rise to different model behaviours (Extended 
Data Fig. 2a–c). Using the 15 validation studies, we assessed the models 
ability to search for cells similar to an input profile (query) and to mix 
similar cells across studies in a low-dimensional space (integration) 
(Extended Data Fig. 2b,c). We reasoned that a good similarity metric 
should both allow searching for similar cells and group together similar 
cells from different studies.

To evaluate querying, we compared searches with SCimilarity to 
gene signature scoring (Methods), aiming for a higher correlation 
between these two quantities (however, cell querying does not depend 
on predefined signatures or annotations). To evaluate integration 
across datasets, without the need to harmonize cell type annotations, 
we applied several benchmarks: an ontology-aware variation of aver-
age silhouette width16 (ASW) and the established normalized mutual 
information (NMI), adjusted Rand index (ARI) and graph connectivity 
benchmarks, which measure the extent of study mixing within each 
cluster (Methods).

Models with higher reconstruction loss weighting (lower β) per-
formed better on the query task, whereas those with higher triplet-loss 
weighting (higher β) scored higher on integration benchmarks 
(Extended Data Fig. 2c). Pure triplet loss (β = 1.0) does not reliably pre-
serve subtle cell state differences but does cluster cells of the same 
type closely together. MSE loss complements this by preserving subtle 
gene expression patterns. We selected a SCimilarity model that opti-
mized the combined query and integration task scores (β = 0.001 and  
margin = 0.05; Methods and Extended Data Fig. 2b,c).

For querying, SCimilarity’s metric learning architecture more faith-
fully encoded cell similarities in the latent space than existing founda-
tion models. SCimilarity’s prediction of similarity to the query cell 
state matched the retrieval gene signature scores much more highly 
(Spearman’s ρ = 0.77) than previous foundation models (ρ = 0.54 for 
scFoundation and ρ = 0.59 for scGPT; Extended Data Fig. 2d) with far 
fewer cells incorrectly scored highly (Extended Data Fig. 2e).

For integration, we compared SCimilarity’s pretrained representation 
to Harmony23, scVI10, scanorama24 and scArches11 on two kidney data-
sets25,26, two peripheral blood mononuclear cell (PBMC) datasets27,28, two 
lung datasets1,29 and all 15 held-out datasets. In all four cases, SCimilarity 
had more coherent cell type clusters as measured by higher cell type 
ASW, comparable graph connectivity, but less mixing between studies in 
low dimensions (higher NMI, ARI and batch ASW; all measures of batchi-
ness) (Fig. 2b), albeit comparable to many of these dedicated integra-
tion methods (which, by definition, see the test data in their training). 
As a negative control, SCimilarity, along with Harmony and scArches, 
did not artificially mix distinct B cell and regulatory T cell populations 
filtered from two different datasets (Extended Data Fig. 3g). Scanorama 
and scVI experienced such cross-population mixing. Notably, SCimilar-
ity’s integrated simply by embedding the cells in the common space  
without learning the integration from the data or fine tuning.

Thus, SCimilarity’s loss function decouples faithful cell representa-
tion (query) from sample mixing (integration) and learns features that 
capture meaningful biology, reduce technical noise and generalizes to 
data held out of the training set.

Generalization across platforms
SCimilarity was trained on both scRNA-seq and scRNA-seq studies 
(Supplementary Table 1) and embeds both data types well, as dem-
onstrated for profiles generated for the same human sample using 
multiple sc/snRNA-seq protocols30. Within SCimilarity-annotated cell 
types, the pairwise embedding distances were only slightly higher 
for nucleus-to-cell profile comparisons than for nucleus–nucleus or 
cell–cell distances (Extended Data Fig. 3a).

SCimilarity’s learned representation also generalizes well to test 
data from multiple other profiling platforms, based on the embedding 
distances and annotation precision for a human PBMC sample that was 
profiled using seven platforms and chemistries31 (10x Chromium v2, 10x 
Chromium v3, CEL-Seq2, Drop-Seq, Seq-well, SMART-Seq2 and InDrops) 
(Extended Data Fig. 3b–f). Data from all platforms were embedded 
effectively, although average within-platform nearest-neighbour 
embedding distances were slightly higher in non-10x platforms, 
with the highest distances for Seq-well and the non-UMI, full-length 
SMART-Seq2 data (Extended Data Fig. 3c,d). Cross-platform anno-
tation precision was consistent for most cell types (except rare con-
ventional (cDCs) and plasmacytoid dendritic cells) (Extended Data 
Fig. 3e,f). Thus, while SCimilarity was trained exclusively on 10x 
Genomics Chromium data, it effectively generalized to other single-cell  
profiling platforms.

Integration without batch correction
SCimilarity quantifies a confidence level for each cell’s representa-
tion, providing both outlier detection and an assessment of the 
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representation’s relevance to new data. Using SCimilarity’s score to 
quantify how distant a query cell is from the training data distribu-
tion provides a heuristic about the quality of the representation— 
a cell scoring highly similar to cells seen during training can be more 
confidently represented. Overall, 79.5% of in vivo holdout cells had high 
representation confidence. Tissue samples with low representation 
confidence, such as stomach (n = 0 training studies), fetal gut (n = 1) 
and bladder (n = 0) were either absent or poorly represented in training 
(Fig. 2c and Methods). Similarly, 43.8% of in vitro cell profiles had low 
confidence due to poor matching to the training set (which excluded 
in vitro samples). Leveraging this ability, we assembled an atlas of  

30 human tissues (Supplementary Table 2) and shared their embed-
dings as part of the SCimilarity distribution.

Cell type matching through similarity
SCimilarity annotated query cell types by finding the cells in the 
annotated reference that are most similar to their profiles (Fig. 3a and 
Methods). This approach differs from established annotation methods 
because it (1) relies on a large, pan-body annotated cell repository; 
(2) uses a measure of expression similarity; and (3) annotates at the 
single-cell level rather than at the subset level. Thus, users can see which 
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individual cells, studies and tissues are driving the annotation. As each 
cell is annotated independently, no clustering is required. A user can 
annotate a cell’s profile by comparing it to a desired subset (for example, 
for a tissue-specific query) or to the entire annotated cell reference. 
Finding the most similar cells is the same as retrieving the query cell’s 
nearest neighbours. This is extremely efficient with hnswlib32, where 
searching a precomputed approximate nearest-neighbour index of 
SCimilarity’s full annotated reference takes just 20 ms (Methods).

A single, pretrained SCimilarity model annotated cell types com-
petitively with tissue-specific models from established methods. For 
example, when limiting potential cell types to author-selected labels, 
86.5% of SCimilarity’s predicted labels from healthy kidney samples19 
matched the author-provided ones (Fig. 3b–d and Methods), com-
parable to the accuracy of scANVI (85.2%), CellTypist (90.4%) and 
TOSICA (87.2%) models directly trained on this dataset (Extended Data  
Fig. 4c–h). In closely related cells (monocytes versus macrophages 
versus DCs, fibroblasts versus myofibroblasts, natural killer (NK) 
cells versus NK T cells versus CD8+ T cells), all methods showed con-
siderable discordance with author-provided labels, suggesting that 
those annotations may be imprecise. Indeed, the author-annotated 
cDCs expressed a mix of macrophage (CD68, CD163, C1QA, MS4A7) 
and DC (CD1C, CLEC9A, CLEC10A, FCER1A) markers, and each method 
resolved this ambiguity differently (Extended Data Fig. 4i,j). SCimi-
larity also competitively recovered fine-grained author annotations 
supported by surface protein markers, performing on par or better 
than other methods across 22 immune cell subsets from a CITE-seq 
dataset that was held out of training33 (Methods) with an annotation 
accuracy (75.3%) outperforming scANVI (52.2%), CellTypist (59.1%) and 
TOSICA (44.4%) (Extended Data Fig. 5a–i). Some closely related states 
(memory versus naive T cells; CD56bright versus CD56dim NK cells) were 
less precisely predicted by all methods, and may not be fully resolved 
by surface markers (Extended Data Fig. 5j). Similarly, author-provided 
and SCimilarity annotations matched well across all 15 test datasets, 
spanning 73 Cell Ontology terms, on par or better than other annota-
tion methods (Fig. 3e).

We used SCimilarity’s cell type assignment to rapidly annotate all 
23.4 million cell profiles using one model, labelling 14,078,941 unan-
notated profiles and reannotating 9,302,209 author-annotated pro-
files (Methods) to a common set spanning 74 cell type labels across 21 
coarse-grain lineages from 30 simplified tissue categories (Extended 
Data Fig. 6a).

Interpretable features drive SCimilarity
To probe SCimilarity’s model and annotations, we quantified the impor-
tance of each gene for each cell type using Integrated Gradients34—an 
explainability method that identifies the impact on model predictions 
from small disturbances to the input expression profiles (Methods). For 
example, the top gene attributions that distinguish lung alveolar type 
2 (AT2) cells are surfactant genes SFTPA2, SFTPA1, SFTPB and SFTPC, 
consistent with known AT2 cell function35. SCimilarity learned these 
without previous knowledge of cell-type-specific genes, signatures 
or highly variable genes. Overall, SCimilarity’s top importance genes 
agreed well with differentially expressed marker genes for 17 different 
matched types8 with the exception of rare neuroendocrine cells (n = 90 
cells in training) (average area under the curve (AUC) = 0.84; Extended 
Data Fig. 6b and Supplementary Table 3).

Cell search across tissues and diseases
We used SCimilarity’s embedding to query for cells across the 
23.4-million-cell reference (Fig. 4a), leveraging the fact that, with metric 
learning, the most similar cells are the nearest-neighbours of a query 
cell. As a query, the user can select either an individual cell profile or 
a centroid of multiple cell profiles. The SCimilarity software provides 

tools for calculating query profiles, performing searches, filtering 
results by metadata and absolute distance, and evaluating the query 
and the results, including metrics to assess whether the query popu-
lation is homogenous enough to yield reliable results, and how novel 
their query profile is (Methods).

As case studies, we focused on macrophages and fibroblasts in ILD, 
given their roles in tissue repair, regeneration and fibrosis36,37. In par-
ticular, recent scRNA-seq studies in many fibrotic diseases, including 
lung fibrosis, cancer, obesity and COVID-19, have reported seemingly 
similar SPP1+ fibrosis-associated macrophage (FM) populations1,38–45. 
However, because each study defined them with different nomen-
clatures and gene signatures, it is unclear how similar they are and 
whether the same cells are broadly present across tissues, especially 
fibrotic conditions.

To study this, we searched our model with an FM cell profile across 
2,507,171 in vivo cell profiles annotated by SCimilarity as monocytes 
or macrophages (Fig. 4a,b). As a query, we input the centroid of a mac-
rophage cell subset1 (query coherence: 94.7%), chosen using a gene 
signature of extracellular matrix remodelling and fibrosis-associated 
genes (SPP1, TREM2, GPNMB, MMP9, CHIT1 and CHI3L1; Methods). In 
2 s, SCimilarity computed the pairwise similarity of our query pro-
file to each of the 2.5 million profiles (Fig. 4b). Alternatively, identi-
fying the 10,000 cells with the highest SCimilarity score out of the 
23.4-million-cell reference takes 0.05 s (Methods). By comparison, 
scoring each cell in the corpus with a literature-defined FM gene sig-
nature took 2 h and 46 min (not shown). The gene signature and SCimi-
larity scores are broadly correlated (r = 0.50, P < 10−300; Extended Data 
Fig. 8a–c), showing that this granular cell state, not just the cell type, is 
well represented in SCimilarity’s query score and embedding.

The SCimilarity search showed that FMs are common in ILD lung 
samples, as well as present in some cancers, including uveal melanoma, 
pancreatic ductal adenocarcinoma (PDAC) and colon cancer (Fig. 4c–e 
and Supplementary Table 4). Of the top 1% of monocytes and mac-
rophages most similar to our query, 93.7% were from lung tissue and 
81.2% from ILD and COVID-19 lung samples. The prevalence of FM-like 
cells in the lung varied by disease: FM-like cells were 20% and 4% of 
monocytes and macrophages in two systemic sclerosis (SSc) studies, 
6.6% on average (s.d. = 4.8%) across 12 ILD studies (excluding SSc), 
0.97% on average across six COVID-19 lung studies (s.d. = 0.25%, 0% 
in non-lung COVID-19 data) and 0.40% in 22 lung studies annotated as 
healthy, normal or with no disease annotation (s.d. = 0.15%). While abun-
dant in SSc lungs, FM-like cells were much rarer (0.14% of myeloid cells) 
in SSc skin46. Notably, there were some FM-like cells in other fibrotic 
diseases and tissues, such as one primary PDAC tumour47 (0.85% of 
1,171 myeloid cells) and one liver metastasis48 of PDAC (0.5% of 1,199 
cells). Thus, while our query was derived from IPF samples, it identi-
fied FM-like cells in many contexts, confirming previous observations 
of FMs in lung injury45,49 and suggesting a role for FM-like cells across 
other organs and diseases.

Searching for multiple cell states helps relate them across tissues, as 
we found by querying a fibrosis-associated myofibroblast query profile, 
defined as the centroid of cells1 expressing a corresponding gene sig-
nature (ACTA2, CDH11, ELN, LOXL1, TNC, ASPN, COMP, CTHRC1, POSTN, 
COL1A1, COL3A1 and COL8A1; query coherence: 77.0%). SCimilarity dis-
tances were substantially more correlated with the myofibroblast gene 
signature scores (ρ = 0.36) compared with those of scGPT (ρ = −0.19) 
and scFoundation (ρ = −0.17) (Extended Data Fig. 7c) and captured 
relevant cell types more specifically (Extended Data Fig. 7d). The pres-
ence of myofibroblasts correlated with the presence of FMs in other 
ILD datasets, COVID-19 and PDAC (r2 = 0.48; Extended Data Fig. 7a,b).

Important FM features match known signatures
We hypothesized that SCimilarity’s detection of FM-like cells across 
ILD studies reflects a shared biological state, despite varying markers 
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the right. Attribution scores, AUC values and P values were calculated using the 
n = 500 cells most similar to FMs against n = 500 randomly sampled cells from the 
full n = 2,578,221 cell monocyte and macrophage query set.
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and nomenclature. To explore this, we used Integrated Gradients to 
quantify gene importance in distinguishing FMs (Methods), yield-
ing genes enriched in fibrotic processes (for example, MMP7, FN1), 
lipid metabolism (such as APOE, LPL) and damage recognition (for 
example, MARCO, MSR1) (Fig. 4f, Extended Data Fig. 8d and Supple-
mentary Table 5). These include known markers (TREM2) and novel 
genes (HLA-DQA1 and RGS1) with higher detection rates in FM-like cells 
(Extended Data Fig. 8e–g).

The most important genes significantly overlapped with published 
gene signatures describing similar macrophage populations or with 
genes of which the differential expression defined each study’s mac-
rophage population of interest (Supplementary Table 6). Published 
signatures derived from seven studies had a high signature match 
(AUC > 0.8), while negative control signatures of M2 and M1 mac-
rophages50 ranked in the bottom three (AUC = 0.64 (P = 0.0062) and 
0.53 (P = 0.36), respectively; Fig. 4f).
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Search for ex vivo human cell model
Researching the role of novel cell states like FMs in disease requires 
modelling, perturbing and studying them in vitro, but identifying cul-
ture conditions remains challenging. To address this, we used SCimi-
larity to find FM-like cells within in vitro samples. After relaxing the 
SCimilarity score threshold to account for differences between in vitro 
and in vivo cells, we identified 41,926 monocytes and macrophages from 
40 samples across 17 studies, from lung organoids to ex vivo treated 
leukaemia cells51, to stimulated PBMCs52.

The cells most similar to our query were from PBMCs cultured for 
5 days in a 3D hydrogel system designed to expand haematopoietic 
stem cells (HSCs)2 (Fig. 5a and Supplementary Table 7). This was a sur-
prising result, as this study was unrelated to lung biology, the cells are 
rare in peripheral blood and there were no findings reported about 
myeloid cells. While no FM-like cells were present among myeloid cells 
on day 0, 15% of cells grown for five or more days were similar to FMs 
(SCimilarity score of >25) and expressed TREM2, GPNMB, CCL18 and 
MMP9 (Fig. 5b–e).

We validated SCimilarity’s prediction by experimentally replicating 
the 3D hydrogel system2 and profiling cultured PBMCs by scRNA-seq 
(Fig. 5b,c,f). While the relative cellular abundances differed between the 
original day 5 data2 and our day 8 replication (Methods), 10.1% of all cells 
in the day 8 experiment were predicted as HSCs by SCimilarity (Fig. 5g), 
and 41.5% of the myeloid cells were predicted as FM-like macrophages 
(Fig. 5b,f; n = 3 donors; 37.1%, 42.5% and 44.9%; SCimilarity score > 25) 
and enrichment for FM hallmark genes, such as CCL18, GPNMB, SPP1 
and TREM2 (Fig. 5c). This demonstrates SCimilarity’s ability to inter-
rogate publicly available data at scale, query a reference of in vivo and 
in vitro data for biologically similar conditions, and help to identify 
experimental conditions to reproduce those results in the laboratory.

Discussion
SCimilarity offers a unique approach based on metric learning for cell 
searches across hundreds of studies, thousands of samples and tens of 
millions (and more) of cells. Query cell states can be defined based on an 
individual cell profile (although these may lack robustness), metacells53, 
clusters or a group of highly similar cells defined by a gene signature. 
To ensure reliable results, SCimilarity assesses a query’s coherence and 
the model’s confidence in the cell’s representation. Using a cell’s full 
expression profile captures its full complexity, bypassing the need for 
curated (and biased) gene signatures. SCimilarity can generate a robust 
signature for a cell state using an explainability technique. As public 
data are diverse and different biological questions may have different 
assumptions, SCimilarity enables users to make case-by-case decisions 
on proper study, sample, or cell filtering and SCimilarity score cut-offs 
appropriate to their investigation. To ensure high quality, we have 
removed any sample duplication across training and test sets; however, 
there are duplicated samples within our full reference dataset as a con-
sequence of including published datasets in toto. We made SCimilarity 
available as an open-sourced Python API with tutorials for querying, 
embedding, annotating and ranking cell profiles. The API facilitates 
tailored queries by k-nearest neighbours (k-NN), exhaustive searches, 
metadata filtering, score-based filtering and visualization tools, and 
each query result is traceable to the original dataset for further analysis.

SCimilarity’s cell queries open the way for systematic exploration of 
transcriptionally similar populations across the vast Human Cell Atlas 
by showing that an identified population is reproducibly present in 
other studies54; connecting results from independent studies, such as 
observational and functional ones; and identifying contexts in which 
the same population may be active. We illustrated this with our search 
for FM-like cells across the atlas, leading to explanatory marker genes, a 
cell culture system that elicits a similar state in vitro, and identification 
of similar cells in other fibrotic lung diseases, COVID-19 and multiple 

tumour types (especially PDAC55), suggesting a broader role for these 
cells in the damage response and tissue remodelling processes. Notably, 
previous foundation models did not perform well on identifying cells 
similar to FM or myofibroblasts, both expanding to less similar cells, 
and missing more similar ones.

As SCimilarity can generalize to cells and datasets not seen in the 
training, cell profiles can be filtered or added without recomputing 
the existing embeddings. Downstream tasks, such as cell type anno-
tation, cell queries and gene signature derivation all are simplified 
using SCimilarity’s generalized representation and can be applied to 
cells not seen during training without informing the model about the 
importance or variability of specific genes. We trained SCimilarity on 
both scRNA-seq and snRNA-seq data collected by 10x Genomics Chro-
mium data (of varying tissue coverage) and it was able to handle test 
data from profiles collected by other scRNA-seq platforms that were 
not included in training. Nevertheless, users should always interpret 
cross-technology integrations with care. The strong performance of 
SCimilarity’s learned representation for both the integration and query-
ing tasks may suggest that it can perform well for other tasks, but these 
need to be assessed in future studies.

By training on Cell Ontology annotations from many published 
studies, SCimilarity learns a consensus of how experts define a given 
cell type. For annotation tasks, the set of labels that SCimilarity can 
predict is by necessarily limited by available Cell Ontology terms and 
experimental observation of cell states across studies. Conversely, cell 
querying is annotation independent, and can use any profile, irrespec-
tive of whether the cell state is in the Cell Ontology or observed in 
training. Note that we deliberately withheld cancer cells and cell lines 
from training due to lack of clear cell type identity and these may not 
be well represented in the current model. In our experience, we see 
poor performance on fetal samples, granulocytes, haematopoietic 
stem and progenitor cells, and intermediate precursor cell states, 
probably because most training data were sourced from adult tissues 
and due to ambiguity in lineage commitment of non-differentiated 
populations, respectively. While SCimilarity’s API provides guidance 
to assess the coherence of a query cell profile, the quality of query 
results ultimately depends on the assumptions and quality of the 
input profile. An input cell profile can be derived from a single cell, 
the centroid of a cluster, or an aggregation of cells scored and filtered 
by a user-defined gene signature—all of which require some subjec-
tive selections that can influence downstream analyses. As larger 
SCimilarity representations are trained on the growing Human Cell 
Atlas, the model will allow querying and searches on expanded swaths 
of human biology.
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Methods

SCimilarity model design
Model architecture. The SCimilarity model consists of one fully 
connected encoder and one decoder stage and reuses the same en-
coding network three times per training triplet, such that updates to 
the model after each batch are shared equally for each subsequent 
batch of training triplets. The decoder stage is not part of the con-
ventional triplet loss architecture, but is included to compute a MSE  
reconstruction loss.

Expression profiles are reduced through an encoder network, start-
ing from 28,231 genes through four hidden layers with dimensions 
1,024, 1,024, 1,024 and 128. The 128-dimensional outputs are unit length 
normalized, forcing all low-dimensional cell representations to lie 
on the surface of a hypersphere. During training, the input layer is 
subjected to 40% dropout, zeroing out many gene expression values 
at random and each hidden layer is subjected to 50% dropout rates for 
maximum regularization65.

While hyperspheric spaces have been infrequently used for repre-
sentation of single-cell profiles66, the triplet-loss model often uses 
hypersphere embeddings to ensure consistency between the model 
hyperparameters12. During triplet-loss training, the objective is to place 
cells of different types sufficiently far apart. The minimum desired 
distance between cells of different types is called the margin. By fix-
ing the volume of the embedding space to the surface of a unit length 
128-dimensional hypersphere, the margin is interpreted consistently 
between model runs. Without normalization, cells can be placed up to 
an infinite distance apart, rendering the margin meaningless.

Triplet-loss training. To learn features that place datapoints consid-
ered similar near each other, the loss function depends on distances 
between data points embedded in a learned low dimensional latent 
space, described with equation (1):

f fd( , ) = ( ) − ( ) (1)2
2x y x y

where x and y are two high-dimensional vectors (here, cell profiles), 
passed through a neural network encoder f().

The triplet-loss model learns from three vectors at a time: the anchor 
(xi

a), positive ( i
px ) and negative ( i

nx ). The anchor and positive vectors 
are considered to be similar, whereas the anchor and negative are  
dissimilar.

The model parameters are iteratively updated to decrease the num-
ber of triplets where the distance between the anchor and negative 
data vectors is insufficiently large relative to the distance between the 
anchor and the positive points, therefore minimizing the triplet-loss 
function defined in equation (2):

x x x x∑
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where α is the margin, which denotes how much further the negatives 
should be from the anchor than the positives, and i is the index of the 
triplet.

Reconstruction loss training. The reconstruction loss is computed on 
the anchor cell only, because each anchor cell is used only once as an 
anchor within a batch. The reconstruction loss is defined in equation (3):
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where N is the number of anchor cells in a batch, set to N = 1,000 in 
SCimilarity, and g() is the function learned by the neural network 
decoder stage.

Combined loss function. Adding a reconstruction loss to classification 
models has been shown to improve generalization67 through a regulari-
zation effect. The SCimilarity loss function combines the triplet loss 
and reconstruction loss functions as defined in equation (4):

L β L β L= (1 − ) × + × (4)MSE triplet

where β is a weighting term in [0, 1]. Training and validation curves for 
triplet loss, reconstruction loss and the percentage of hard triplets were 
constructed for varying values of β in [0, 1] (Extended Data Fig. 2a), 
where β = 0 corresponds to a conventional autoencoder and β = 1 cor-
responds to a pure triplet-loss model. Empirically, β = 0.001 performed 
best on the cell search task (query model) and β = 1 performed best on 
batch integration (Extended Data Fig. 2c).

Cell Ontology terms and relationships
Authors may annotate cell types at different granularities, which con-
founds triplet sampling by introducing cell type annotations with hier-
archical relationships that cannot be unambiguously defined as either 
similar or dissimilar. As such, cell type annotations used for training 
are defined using standardized Cell Ontology terms and valid triplets 
are restricted to cells without vertical Cell Ontology relationships 
between the members of the triplet. A vertical relationship is defined 
as any directed path of one or more ancestor–descendant relationships 
in the Cell Ontology network. Thus, there are three binary relationships 
defined for annotation: (1) similar pairs with identical annotations (for 
example, T cell and T cell); (2) dissimilar pairs with non-vertical ontology 
relationships (for example, ‘CD4-positive, αβ T cell’ and ‘CD8-positive, αβ 
T cell’); and (3) ambiguous pairs with vertical relationships (for example, 
‘T cell’ and ‘CD4-positive, αβ T cell’). Positives are drawn from cells similar 
to the anchor, negatives are drawn from cells dissimilar to the anchor 
and cells that are ambiguous to the anchor are excluded from sampling.

GEO data aggregation
In total, 334 human sc/snRNA-seq datasets were obtained from the 
GEO18. Multiple filtering steps were used to restrict the datasets ana-
lysed to samples from human tissue that were generated using the 10x 
Chromium platform and that reported unnormalized gene count data 
that could be automatically processed. To select appropriate datasets, 
search criteria were designed for the Biopython Entrez search tool68 
to find GEO studies that had specific properties, such as metadata 
keywords, file formats and species. Then, using GEOparse69, the GEO 
text metadata were downloaded for each sample and searched for 
blacklisted words in the metadata or download URLs (for example, 
smartseq, trizol and fasta) to further filter out samples that were not 
generated using 10x Chromium. Data for samples and corresponding 
download links that passed the metadata filter stage were automatically 
downloaded. No datasets were realigned. In total, 753 studies were iden-
tified for download. A set of import functions was designed for the most 
common file type formats (.mtx, .h5ad and gene expression matrices 
in .tsv or .csv). Any dataset that could not be successfully downloaded 
or read in was discarded. Once read in, each sample was automatically 
tested for count data and gene names that match a reference gene list 
or gene name mapper before saving each file in a uniform .h5ad format 
for later processing. This resulted in a total of 334 published studies 
that were not duplicates of studies found in CELLxGENE19 for use in 
our analysis. In the process of curating our reference data, we found 
that individual samples have been reposted across studies without 
references or a record of data provenance. We therefore advocate for 
improved data management practices in the field.

Data preprocessing
All UMI count data were natural-log normalized per cell with a scal-
ing factor of 10,000 using the scanpy.pp.normalize_to_target(adata, 
10000) and scanpy.pp.log1p(adata) functions from scanpy70.
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Data aggregation and filtering
Datasets with author-provided cell type annotations used for train-
ing were obtained from Tabula Sapiens71, 10x Genomics20, the 
Single-Nucleus Cross-Tissue Atlas8 and the Human Lung Cell Atlas72 
and subjected to the same preprocessing procedures as program-
matically downloaded datasets. Cell type annotations were manually 
converted into terms contained within the Cell Ontology. Cells with 
annotations that did not clearly map to the Cell Ontology were not 
included in training.

Cell profiles previously annotated as doublets, scored as doublets by 
infer_doublets from Pegasus73, had >20% total UMI counts aligned to 
mitochondrial genes or had <500 total genes detected were removed.

Preparation of training and test data
Training and test sets were chosen such that entire studies were held out 
of training (rather than holding out a subset of cells from each dataset) 
(Supplementary Table 1); there were 56 and 15 datasets in the training 
and test sets, respectively. This presents a harder generalization chal-
lenge and reflects how users are likely to use SCimilarity. Test datasets 
were selected to reflect the tissue diversity within the training sets.

Cell Ontology term selection
Cell Ontology terms were selected for training if they were observed in 
at least two separate studies in the training set. Terms that appeared in 
only one study were not used because SCimilarity is trained by compar-
ing cells across studies. To rescue single-study terms, the immediate 
parent terms were inspected across studies. If a single-study term’s 
parent was observed in at least two other datasets, then the original cell 
type annotation was replaced with the coarser parent term (Supplemen-
tary Table 1) and used for ontology-aware triplet sampling. Otherwise, 
all cells with this annotation were removed from training. This process 
resulted in 203 Cell Ontology terms used in training (Supplementary 
Table 1). All 203 terms are available to the user for cell type prediction 
on new datasets using the SCimilarity software, with the default terms 
used for cell type prediction set to 81 manually curated terms with 
similar granularity, for convenience (Supplementary Table 1). As the 
size or annotation quality of training data grows, the number of Cell 
Ontology terms meeting the inclusion criteria are expected to increase.

Semi-hard triplet mining
During training, batches of 1,000 cells are sampled from the training 
datasets. This sampling is weighted by study and cell type to have a 
similar number of observations per cell type from each study per batch.

Owing to the maximum operation within the loss function, not all 
viable triplets contribute to the gradient, and are categorized as easy, 
semi-hard or hard, based on their contribution to the gradient.

Easy negatives are defined by equation (5):
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Easy negatives provide no information to the gradient because the 
distances between the cells in the low-dimensional embedding already 
satisfy the objective, such that the maximum operation returns 0 to 
the triplet loss sum. As there are many easy triplets after training a 
small number of batches, randomly sampling triplets does not train 
models effectively. To accelerate training, triplets are mined to search 
for training triplets that are especially informative for model training12.

Hard negatives are defined by equation (6):
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Hard negatives contribute the largest quantity to the loss function, 
because they do not fit and are far from fitting the desired latent rela-
tionships. In practice, hard triplets are rarely useful for training, because 

they contribute to model collapse during training12,74. Hard negatives 
may be enriched for incorrectly annotated cells.

Semi-hard negatives are defined by equation (7):
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Semi-hard negatives contribute small amounts to the loss function 
because they nearly satisfy the desired distances between cells in 
low-dimensional space. Meaning, the negative cell profile is further from 
the anchor cell than the positive cell, but by a less than the margin, α.  
Semihard negatives are often used in triplet-loss models12.

Overall, we chose to train SCimilarity using only semi-hard negative 
triplets.

Explainability framework
An explainability framework was used to identify genes of which the 
variation leads to the most significant variations of the learned features 
and, in turn, affects the relative distance between different cells.

An explanation for a pair of cells is defined as those genes that have 
the greatest impact on the relative distance between those cells in 
latent space. Given f fd( , ) = ( ) − ( ) 2

2x y x y , the distance between two 
cell profiles x and y in latent space f, the integrated gradient approach34 
was extended to compute the importance of each gene i in the com-
parison between cell profiles x and y as defined in equation (8):

∫ a
x

Importance ( , )

= max(( − ), 0) ×
∂d( + × ( − ), )

∂

(8)
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i i a i=0

1

x y

x y
y x y y

Here a controls an interpolation process used to average gradients 
along a path. High values of Importancei(x,y) correspond to genes 
that are highly expressed in x, and their modification (that is, gradi-
ent) affects d(x, y) more. Intuitively, the expression of each gene in 
y is gradually increased to match x along the trajectory from x to y. 
Through this trajectory, the rate of change of d(x, y) is computed 
for each gene, aggregating the results. To compute features relevant 
across broader contexts, the score is scaled by (xi − yi), to achieve global 
explainability75. To identify genes that are upregulated in a subset of 
interest, genes i with expression xi < yi are ignored.

This approach differs in several key ways from the standard inte-
grated gradient approach, because: (1) gradients are computed with 
respect to a learned distance instead of output features; (2) attributions 
where xi < yi are ignored; and (3) the sign of the integral is ignored due 
to the complex interactions between features.

To identify important genes for a cell type t, a set of cells T t t∈ { , …, }N1  
with cell type t and a set of cells B b b∈ { , …, }N1  with cell types different 
from t are randomly sampled. Pairwise importances are computed for 
each pair of cells ti in T and bj in B and aggregated to obtain a signature 
that characterizes cell type t as defined in equation (9):

∑t
N

t bSignature ( ) =
1

Importance ( , ) (9)i
c

N

i c c
=1

As the pairwise comparisons are averaging relative comparisons, 
the sampling of b b{ , …, }N1  impacts the signature scoring. To obtain 
general cell type markers, a background of all cell types is sampled. To 
obtain a cell-state-specific signature, a background of cells in other 
states of the same type are sampled. Confidence intervals for each 
gene i are computed as the standard error of the mean. This results in 
an attribution score for each gene.

Attribution enrichment testing
Gene attributions were calculated using a set of foreground cells and 
a set of background cells. Foreground cells were the 500 cells most 



similar to the query (FM) among the searched cells (for example, high 
confidence in vivo monocytes and macrophages). Background cells 
were selected by randomly sampling 500 cells outside of the top 10,000 
cells (within in vivo monocytes and macrophages) by SCimilarity score 
to the query cell (FM). The AUC enrichment statistic was calculated 
based on the 3,000 genes with the highest attributions.

For each published signature, the AUC and one-sided P value were 
calculated using Mann–Whitney U-tests according to equation (10):

U
n n

AUC = (10)
1 2

where U is the Mann–Whitney U statistic, n1 is the number of genes in 
the published signature among the 3,000 genes and n2 is the number 
of genes not in the published signature among the 3,000 genes.

Training and evaluation metrics
SCimilarity score. The SCimilarity score is defined as the inverse of 
the cosine distance of two embedded cell profiles as in equation (11):

c c
SCimilarity score =

1
1 − × (11)

i j

where ci and cj are the embeddings of the ith and jth cell profiles with 
unit length, respectively and i ≠ j. The threshold for similarity varies in 
practice by question and cell types.

Ontology-aware ASW. ASW has been used to assess the performance 
of data integration tasks on multiple scRNA-seq studies16 by quantify-
ing how coherently each set of cells is grouped across studies after 
integration. For the batch ASW metric, the sets of cells are grouped by 
within study batches, so it is quantifying how coherently each batch is 
clustering (a lower score here is desired as it means greater mixing). 
For cell type ASW, where sets are defined by cell type, we introduce 
an ontology-aware modification. Here a higher score is desirable as it 
means that cells of the same type are more coherently clustered. The 
silhouette width of cell profile i of cell type t typically compares the 
average intracell type distances a(i) and the average inter-cell type 
distances b(i) between cells of type t and cells of the nearest cell type, 
defined by equations (12) and (13), respectively:

∣ ∣ ∑a i
C

i j( ) =
1

− 1
d( , ) (12)

I j C i j∈ , ≠I

∣ ∣ ∑b i
C

i j( ) = min
1

− 1
d( , ) (13)J I J j C

≠
∈ J

where, typically, CI is the set of cells of author-annotated type t and CJ 
are the cells of all other cell types.

However, the ASW as typically formulated does not account for differ-
ences in granularity of cell type annotations across studies. To address 
those, a modified formulation is used where CI contains cell type label 
t and all of its ontological descendants and CJ is the set of all other cell 
types, except cells of type t and any of its ontological descendants or 
ancestors. For example, if computing a(i) for a T cell, the distances 
between all types of T cell terms (CD4-positive, αβ T cell, CD8-positive, 
αβ T cell and CD4-positive, CD25-positive, αβ regulatory T cell and so 
on) are members of the T cell term. Ancestor terms of T cells, such as 
the term ‘lymphocytes’, are not members of the T cell class (nor a T cell 
subset) but are excluded from the summation indices in the calcula-
tions of a(i) and b(i).

Correlation with gene signatures. To test how the SCimilarity distance 
represents distance between predefined cell states, a signature-based 
definition of cell state was correlated with the SCimilarity score (above).

For each cell in the test set, both the signature score76 and a SCimilar-
ity score versus the cell query are calculated, yielding two vectors, and 
the Pearson’s correlation coefficient is calculated between the vectors.

Model selection. Models were run in triplicate with 18 combinations 
of 3 different margins (α ∈ {0, 0.01, 0.05, 0.1) and 6 different β param-
eters (β ∈ {0, 0.0001, 0.001, 0.01, 0.1, 1.0}) and one query model and 
one integration model were selected based on two criteria. First, query 
performance was tested by how well cell similarities to a query FM 
profile correlated with a signature defining that same state (TREM2, 
GPNMB, SPP1, CCL18, MMP9, CTSK, APOE, CHIT1, LIPA, CHI3L1, CD14, 
APOC1). Second, ontology-aware ASW was used to quantify how well 
the cells of the same type from different studies intermixed in SCimilar-
ity’s representation. The model with the highest summed query and 
integration score was selected as it performed much better on the query 
task than the other high integration models (Extended Data Fig. 2b,c). 
This selected integration model had more study mixing than the query 
model according to the study (NMI) and study ARI16.

Data integration benchmarking. SCimilarity was compared to four 
batch integration methods: Harmony23 (harmonypy v.0.0.9), Scano-
rama24 (v.1.7.4), scVI10 (v.1.1.0rc2) and scArches11 (scVI v.1.1.0rc2). The 
modified ASW (above), ARI and NMI were calculated as integration 
benchmark metrics. As ‘ground truth’ cell type annotations are required 
to assess preservation of biological signal, methods were benchmarked 
on the 15 test studies with author-provided cell type annotations held 
out during SCimilarity training.

Harmony and Scanorama were run using the wrapper functions in 
scanpy70. scVI and scArches were run using the scvi-tools workflow 
described in their online tutorials (https://docs.scvi-tools.org). As the 
scArches workflow requires a reference dataset, 101,133 cell profiles 
were sampled across all training datasets with uniform probability 
across studies for use as the reference.

Study ARI, study NMI and cell type ASW were calculated on four 
distinct integration tasks based on five different combination of vali-
dation datasets, four positive control tasks: (1) 143,638 cell profiles 
sampled from all 15 test datasets with uniform probability across 
studies; (2) two lung datasets1,29; (3) two kidney datasets25,26; and  
(4) two PBMC datasets27,28, all selected from the test studies, and one 
negative control task of integrating B cells from one PBMC dataset28 
with regulatory T cells from a different PBMC dataset27.

Cell type annotation
Cell type assignments were performed by k-NN classification combined 
with an annotated reference set. SCimilarity’s reduced dimensionality 
latent space was used to determine k = 50 nearest neighbours in the 
reference dataset to a query cell t, and the query cell was annotated 
either by tallying votes based each cell’s annotation with equal weights 
according to equation (14),


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


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n
Cell type( ) = argmax

1
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or with weights by distance in SCimilarity’s reduced dimensionality 
latent space according to equation (15):
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To allow users to annotate new datasets from a restricted list of 
cell types of interest, specific cell types can be excluded (blocklist-
ing) or annotations may be limited to specific cell types (safelisting). 
When feasible, blocklisting or safelisting is recommended to improve 
interpretability and reduce spurious annotations. However, extensive 
blocklisting or safelisting can slow the annotation process substantially, 

https://docs.scvi-tools.org
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because the pre-built k-NN indices are not optimized for a modified 
target cell type list.

k-NN parameters for annotation and query
Two separate k-NN indices were used for efficient and accurate que-
ries. For cell type annotation, a 7.9-million-cell k-NN index was built 
using hnswlib32 with ef_construction = 1,000 and M = 80. Searching 
this k-NN found the 50 nearest neighbours (default behaviour) for cell 
type annotation (k = 50) and ef = 100.

Cell query relied on a separate 23.4-million-cell k-NN index also built 
using hnswlib. This index was constructed with the following param-
eters: ef_construction = 400 and M = 50. The search parameters are set 
by the user’s request for how many similar cells to return. The default 
behaviour is set to k = 1,000 and ef = k but, in practice, k can vary widely 
depending on the use case.

Cross-technology benchmarking
Comparison of scRNA-seq and snRNA-seq SCimilarity embeddings was 
performed using the paired data for sample CLL1 from GEO GSE140819 
(ref. 30). SCimilarity cell type annotation was constrained to 7 Cell 
Ontology terms that were most similar, but more granular than, the 
three author-provided annotations (B cell, T cell and macrophage). Pair-
wise distance distributions were calculated for up to 1,000 randomly 
sampled cell pairs (limited by cell numbers), without replacement, 
for the most abundant SCimilarity annotated cell types. Distributions 
were generated for pairs of selected populations within annotation 
and protocol (cell to cell or nucleus to nucleus), within annotation and 
across protocols (cell to nucleus) and across annotation (one cell type 
to another cell type) and within protocol.

Profiling platforms were compared using the data for the human 
PBMC sample from SCP42431. The distribution of nearest-neighbour 
SCimilarity scores was retrieved from the k-NN graph both irrespective 
of platform and constrained to within-platform and within-replicate 
neighbours. Cell type annotations were constrained to nine Cell 
Ontology terms most similar to the author-provided annotations. 
Annotation precision was calculated as the percent of cells with 
SCimilarity-predicted annotations identical to the Cell Ontology 
mapped author-provided annotations within each platform and  
replicate separately.

Cell type annotation benchmarking
SCimilarity’s cell type annotation was compared to three cell type pre-
diction methods (CellTypist77 v.1.6.2, TOSICA78 v.1.0.0, and scANVI79 
from scVI v.1.1.0rc2) with three separate classification tasks: (1) anno-
tating cells in a human kidney dataset25; (2) annotating cells in a human 
PBMC CITE-seq dataset33; and (3) annotating cell types across all 15 
holdout datasets that had author-provided annotations. The same 
SCimilarity model was used for both evaluations. A separate model 
was trained for each task by each of the other three methods. F1 scores 
were calculated for each cell type in each test study.

For the ref. 25 kidney test dataset (12,190 cell profiles), cell type anno-
tations were flattened to 22 Cell Ontology terms manually. CellTypist, 
TOSICA and scANVI models were trained using 89,520 cells obtained 
from four kidney SCimilarity training datasets that were annotated with 
cell type terms in the ref. 19 test dataset. For the CZI PBMC CITE-seq 
dataset of ref. 33 (94,811 cell profiles), four ambiguously defined cell 
populations were removed from the analysis (for example, exhausted B 
cells, immature B cells, proliferating T cells and proliferating NK cells) 
and cell type annotations were constrained to 22 Cell Ontology terms 
identical to the author provided annotations. scANVI was trained using 
the scvi-tools workflow (https://docs.scvi-tools.org). Celltypist was 
trained using the workflow for custom models (https://colab.research.
google.com/github/Teichlab/celltypist). TOSICA was trained using 
the demo tutorial (https://github.com/JackieHanLab/TOSICA). Per-
formance was assessed by F1 score for all cell type prediction methods.

For benchmarking across all 15 test datasets (Fig. 3e), 143,638 cell 
profiles were sampled with uniform probability across the 15 studies. 
These were then filtered to cell types found within the test set annota-
tions. New CellTypist, TOSICA and scANVI models were learned with 
the remaining 103,116 training cell profiles sampled across all training 
datasets, weighted so that each study was equally represented in the 
complete training set.

Outlier filtering
To filter outlier cells before visualization and downstream analysis, 
SCimilarity’s score is used to flag cells that are out of distribution. Cells 
with a SCimilarity score < 33 from the nearest cell in the training set 
were removed before further analysis. Many of these cells were from 
immortalized cell lines, and reflect their difference from primary cells 
(and absence in the training). Note that if out-of-distribution cells are 
not removed, these cells will not be accurately annotated and can con-
found visualization.

Macrophage query preprocessing
To prepare a cell query for FM cells, a public dataset1 (GSE136831 and 
https://www.ipfcellatlas.com) was preprocessed with the same steps 
for all ingested data and scored use Scanpy’s scanpy.tl.score_genes 
function with a gene signature of SPP1, TREM2, GPNMB, MMP9, CHIT1 
and CHI3L1 in Scanpy70. The average profile of the top 50 scoring cell 
was embedded using SCimilarity and used as the input query to SCimi-
larity’s cell search model and used throughout analyses in Figs. 4 and 5.

Foundation model benchmarking
SCimilarity, scGPT5 (v.0.2.1, 23 June 2023 model) and scFoundation80  
(9 December 2023 model) were compared on dataset GSE128033 
using the FM and myofibroblast gene signatures and a cell query pro-
file derived from GSE136831. The query cell profile was defined as the 
centroid of the top 100 scoring cells using scanpy gene signature in 
GSE136831. The query profile and all cells in GSE128033 were embedded 
according to the scGPT reference mapping tutorial (https://github.com/
bowang-lab/scGPT) and the scFoundation get_embedding.py script 
(https://github.com/biomap-research/scFoundation) documentation. 
Embedding distances were calculated using the Euclidean distance 
between the embedded query profile and all cells in GSE128033. Spear-
man rank correlation coefficient values (ρ) were calculated between 
the gene signature score and distances to the query cell state across 
all cells in each model. Cell type annotations predicted by SCimilarity 
were constrained to 28 Cell Ontology terms present in lung tissue.

Quality control for query input
The results of cell queries depend on the centroids used for the query. To 
help users generate effective cell state queries, a statistic is calculated 
from the query cells (that is, cells in a grouping and their centroid). For 
robust and meaningful query results, a cell state should be a centroid of 
a coherent, relatively homogeneous set of cells. To evaluate centroid’s 
quality, its underlying cells are subclustered (k = 10 clusters), 10 cen-
troids are computed from the subclustering and a SCimilarity search is 
conducted for the most similar cells to each of the 10 centroids (default 
n = 100 nearest neighbours). The mean overlap in cell query results 
between the parent centroid profile and each k-means subcluster  
centroid is reported as a measure of query stability.

Myofibroblast and FM co-occurrence
Co-occurrence of two cell states was calculated using the results of 
two independent queries. The relative frequency of each query (for 
example, FMs and fibrosis-associated myofibroblasts) in each sample 
was quantified by counting the number of searched cells in that sample 
that were highly similar (≥95th percentile of SCimilarity scores) to each 
query profile, divided by the number of searched cells in the sample. 
‘Searched cells’ for FMs were any subtype of monocyte or macrophage 
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(classical monocyte, intermediate monocyte, non-classical monocyte, 
macrophage or alveolar macrophage) (Fig. 4c). ‘Searched cells’ for 
fibrosis-associated myofibroblasts were all cells annotated as fibro-
blasts or myofibroblasts (Extended Data Fig. 5a). Only in vivo tissue sam-
ples with at least 50 macrophages and 50 fibroblasts were considered.

Important genes and pathways in FMs
Important genes were identified using SCimilarity’s attribution score 
method. This method requires two cell groups to compare, identifying 
which genes differ between them. Here we used 500 cells that were 
considered to be similar to the average FM profile calculated from a 
previous study1 as the FM-like group. To compare to the FM-like group, 
500 cells were randomly sampled from the full 2.5-million-cell mono-
cyte and macrophage query set.

Reactome pathways enriched for the 100 genes with the top impor-
tance scores for FMs were determined using the method provided in the 
ReactomePA81 R package, with multiple-hypothesis correction using 
the Benjamini–Hochberg method and the background gene universe 
restricted to the approximately 28,000 genes included in SCimilarity. 
Pathways were considered to be significant if they met the criteria of 
adjusted P value (Q) ≤ 0.05 and gene count ≥ 4.

3DCS culture of PBMCs
Peripheral blood samples from healthy volunteers were provided 
by the Samples for Science (S4S) donor program at Genentech; 
donors provided written informed consent and sample collection 
was approved by the Western-Copernicus Group Institutional Review 
Board. The samples were collected in heparin collection tubes and 
subsequently diluted 1:1 with a solution of PBS containing 2% FBS and 
1 mM EDTA. Then, 30 ml of diluted blood was overlayed onto 15 ml of 
Lymphoprep (StemCell Technologies) in a 50 ml tube and centrifuged 
at 3,000 rpm for 20 min at 4 °C. PBMCs were isolated from the inter-
phase after centrifugation and diluted with PBS containing 2% FBS 
and 1 mM EDTA and centrifuged at 300g for 10 min at 4 °C. The cell 
pellet was washed again with PBS containing 2% FBS and 1 mM EDTA. 
Red blood cell lysis was performed on the cell pellet by resuspend-
ing in RBC lysis buffer (Cell Signalling Technology) for 5 min at room 
temperature, followed by inactivation with addition of RPMI medium 
containing 10% FBS. Cells were pelleted by centrifugation at 300g for 
10 min at 4 °C and subsequently washed with PBS containing 2% FBS 
and 1 mM EDTA. Cells were then resuspended in a 10% sucrose solution 
at a concentration of 2 × 106 cells per ml right before plating into 3D 
hydrogel culture. Puramatrix hydrogel (Corning) was vortexed for 
30 s and diluted 1:1 with a 20% sucrose solution. Then, 250 µl of diluted 
Puramatrix hydrogel was mixed with 250 µl of resuspended PBMCs 
and plated in a 24-well tissue culture plate. To induce gelation, RPMI 
medium was overlaid onto the hydrogel/PBMC mixture and incubated 
for 5 min in a 37 °C incubator with 5% CO2. Overlayed medium was aspi-
rated off the 3D hydrogel and washed twice with RPMI medium, after 
which 600 µl of 3DCS medium, formulated as previously described2, 
was overlaid onto the hydrogel. Cells were cultured in a 37 °C incu-
bator with 5% CO2 for 8 days, with medium exchanges every other 
day. On day 8, culture cells were recovered from the 3D hydrogel for  
scRNA-seq.

scRNA-seq of the 3D culture system
Wells of the 3D hydrogel culture were washed with PBS, followed by 
recovery of the hydrogel and cells by gentle pipetting in PBS buffer. This 
solution was centrifuged for 5 min at 750g, and the hydrogel/PBMC pel-
let was resuspended in TrypLE solution (Thermo Fisher Scientific) and 
incubated at 37 °C for 10 min. RPMI medium with 10% FBS was added 
and the solution was centrifuged for 5 min at 750g. The resultant pellet 
was washed twice with PBS to remove hydrogel matrix debris. PBMCs 
were resuspended in PBS and passed through a 40 µM filter, pelleted by 
centrifugation at 300g for 5 min and resuspended in RPMI medium with 

10% FBS. The cell solution was subjected to FACS to isolate cells from 
any remaining hydrogel debris and recovered cells were concentrated 
to 1,000 cells per µl in RPMI medium with 10% FBS for downstream 
profiling by scRNA-seq.

scRNA-seq was performed using the Chromium Single Cell 3′ Library 
and Gel bead kit v3 (10x Genomics), according to the manufacturer’s 
user guide. In brief, the cell density and viability of the single-cell sus-
pension were determined using the Vi-CELL XR cell counter (Beckman 
Coulter). The cell density was used to impute the volume of single-cell 
suspension needed in the reverse transcription master mix, aiming 
to achieve around 10,000 cells per sample. cDNAs and libraries were 
prepared according to the manufacturer’s user guide (10x Genom-
ics). Libraries were profiled using the Bioanalyzer High Sensitivity 
DNA kit (Agilent Technologies) and quantified using the Kapa Library 
Quantification Kit (Kapa Biosystems). Libraries were sequenced on 
the NovaSeq 6000 (Illumina) system according to the manufacturer’s 
specifications with 28 + 90 bp paired-end reads at a depth of 101 million 
mate-pair reads. Sequencing reads were aligned to the GENCODE 27 
Basic gene model on the human genome assembly GRCh38 using Cell 
Ranger v.6.0 (10x Genomics).

Individual samples were genetically demultiplexing using the sin-
gularity container provided with Souporcell (v.2.0)82. No genotype 
information was provided to the pipeline. As PBMCs were provided 
from three donors, a k value of 3 was used to cluster the samples into 
three genotypes. These samples were preprocessed consistently with 
the previously ingested samples and then embedded using SCimilarity 
to enable direct comparisons to ref. 2 as well as the rest of the public 
datasets.

SCimilarity cell type classification was applied to both public and 
validation cells using SCimilarity with the following safelist: B cell, 
CD4-positive, αβ T cell, CD8-positive, αβ T cell, conventional dendritic 
cell, haematopoietic stem cell, macrophage, monocyte, natural killer 
cell, plasma cell, plasmacytoid DC.

Code performance benchmarking
Benchmarks were run on servers with 8 Intel Xeon E5-2650 v4 CPUs 
with 2.20 GHz cores and a total of 128 GB of RAM.

Query runtimes, using the prebuilt approximate k-NN index32 to find 
the top n most similar cells, had an average runtime of 50 ms. Some API 
functions use the query and summarize the metadata within one func-
tion call. That function timing is dominated by summarizing metadata 
and computing statistics from the query results, which requires an addi-
tional 3.3 s. This performance differs from an exhaustive comparison 
(Fig. 5b), where the query was directly compared against 2.58 million 
monocytes and macrophages with a runtime of 2 s.

Cell signatures were calculated using scanpy.tl.score_genes. The 
scanpy score_genes function was applied to the already normalized 
data. This runtime totalled 2 h, 46 min and 20 s when it was applied 
across each .h5ad file (one file per tissue sample). Even though .h5ad 
files were not stored with any compression, file reading was a dominant 
factor in runtime.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
In vitro data generated in this study have been deposited in the GEO 
under accession numbeer GSE280632. Model weights, single-cell data 
embeddings, curated metadata and k-NN graphs have been deposited 
at Zenodo83 (https://doi.org/10.5281/zenodo.10685499). Source reposi-
tories and accession numbers for the public sc/snRNA-seq studies used 
for model training, model testing or as part of the unlabelled referenced 
set are provided in Supplementary Table 1.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE280632
https://doi.org/10.5281/zenodo.10685499
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Code availability
Code and tutorials are available at GitHub (https://github.com/Genen-
tech/scimilarity). A snapshot of the code that accompanies this publica-
tion is available at Zenodo84 (https://doi.org/10.5281/zenodo.14087552). 
Code license: Apache 2.0. Pretrained model weights, k-NN and pre-built 
indices license: CC-BY-SA 4.0.
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Extended Data Fig. 1 | Data compendium to assemble a pan-human 
reference. a,b, Cumulative number of (a) cells (y axis) and (b) samples (y axis) 
profiled by sc/snRNA-seq (and matching our filters; Methods) over time (x axis). 
Doubling time is calculated based on the publication date from the most recent 
150 data points (dashed red line). c, Author-annotated cell types used in training. 

Number of author-annotated cells (colour bar) from each Cell Ontology type 
(rows) and study (columns) used for SCimilarity model training. d, Tissues and 
diseases used in training. Number of studies (heatmap tiles, text and colour bar) 
and cells (margins, y or x axis) used for model training from each tissue (rows, 
right y axis) and disease (columns, top x axis).
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Extended Data Fig. 2 | SCimilarity training and hyperparameters.  
a, Training and validation curves. Triplet loss ( y axis, left), reconstruction loss 
(mean squared error (MSE), y axis, middle), and percent of hard triplets (y axis, 
right) across training (top) or validation (bottom) batches (x axis), for SCimilarity 
models with margin=0.05 across six β values (colour). Reconstruction loss for 
pure triplet loss (β = 1) not shown. b, Impact of hyperparameter selection on 
model performance. Overall model score (colour) across margins (columns) and 
loss weightings (β, rows), (β = 0: pure reconstruction loss; β = 1: pure triplet loss). 
Model score is the sum of query score for FMΦ retrieval (correlation between 
signature and SCimilarity score of retrieved FMΦs) and ontology-aware average 
silhouette width of integration (higher score reflects more coherent clusters by 
cell type). c, Test metrics for SCimilarity models across β values. FMΦ retrieval 
(first row), ontology-aware average silhouette width of integration (second 

row), UMAP embedding of cells from nine lung datasets coloured by study (third 
row), and sum of retrieval and integration scores (y axis, fourth row) for models 
trained with increasing β (leftmost: traditional autoencoder; rightmost: triplet 
loss only) across n = 3 model replicates for each β. d,e, SCimilarity better 
captures an FMΦ query. d, UMAP of cells from the ILD study GSE128033 with 
cells coloured by FMΦ signature score (ground truth) or similarity to the FMΦ 
query for SCimilarity (right, first), scGPT (right, second), or scFoundation 
(right, third). Top left: Spearman’s ρ between signature score rankings and 
distances to the query cell. e, Distribution of FMΦ signature (first), SCimilarity 
(second), scGPT (third), and scFoundation (fourth) scores as in (d) for n = 28 
SCimilarity predicted cell types across n = 58,530 cells (outliers removed). 
Boxplot: upper/lower quartiles (box), min/max values (whiskers), and median 
(center line).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128033


Extended Data Fig. 3 | SCimilarity integrates and annotates across profiling 
methods. a, SCimilarity integrates snRNA-seq and scRNA-seq. Distribution of 
pairwise SCimilarity embedding distances for randomly sampled cell (sc-sc), 
nucleus (sn-sn) or cell-nucleus (sc-sn) profile pairs (max n = 1000, without 
replacement) within SCimilarity-annotated B cells (first), classical monocytes 
(second), CD4+ T cells (third), or CD8+ T cells (fourth) from patient tumour CLL1 
in Slyper et al., 202030; overlayed with similarly sampled cell or nucleus pairwise 
embedding distances between B cells and classical monocytes (first, second) or 
CD4+ T cells and CD8+ T cells (third, fourth). b-f, SCimilarity generalizes well to 
scRNA-seq test data collected by seven different methods. UMAP embedding  

of PBMC profiles from one sample profiled by seven different scRNA-seq 
methods31 coloured by platform and replicate (b) and nearest-neighbour 
distance in SCimilarity’s latent space (b); d, Distribution of nearest-neighbour 
distances (y axis, range limited to ≤ 0.05) for each platform and replicate  
(x axis). e, UMAP embedding as in b, coloured by author (left) or SCimilarity 
(right) annotations. f, Percentage (colour bar) of author-annotated cells  
(rows) matching annotations predicted by SCimilarity for each platform and 
replicate (columns). g, Negative control benchmark of data integration. UMAP 
embedding of B cell profiles (from Szabo et al.28) and Treg profiles (from Deng 
et al.27), coloured by cell type after integration with each of five methods.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Validation of cell type annotation on tissue scRNA-
seq. a, SCimilarity unconstrained cell type annotation. UMAP embedding  
of single cell profiles (dots) from SCimilarity’s latent representation of a test 
scRNA-Seq kidney data19 (held out from training) (as in Fig. 3b,c), coloured by cell 
annotations obtained without constraining to the scope of author-provided 
annotations in the study. b, Annotation is robust to the number of nearest 
neighbours. Cell type classification score (y axis) at different number of nearest-
neighbours, k (x axis). c-h, Benchmarking of annotation by established methods. 
c,e,g, UMAP embedding of cell profiles as in (a) coloured by annotations 
predicted by CellTypist (c), TOSICA (e), or scANVI (g). d,f,h, Percentage  

(colour bar) and number of author-annotated cells (columns) matching 
annotations predicted by CellTypist (d), TOSICA (f), and scANVI (h) (rows).  
i,j, Author annotated cDCs express a mixture of DC markers and markers of  
other cell types. Mean expression (dot colour) and percent of expressing cells 
(dot size) for canonical marker genes of monocytes (Mono), macrophages (Mac), 
and conventional dendritic cells (cDCs) (i) or epithelial (Epi), endothelial (Endo), 
or other non-myeloid lineages (Other) ( j) in author-annotated cDCs (row 1) and 
the subset of those same cells predicted as different myeloid subsets (rows, i) or 
as non-myeloid cells (rows, j) by other annotation methods. Right bar plots and 
counts: number of cells per annotation.
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Extended Data Fig. 5 | Validation of cell type annotation on CITE-seq of 
PBMCs. a, Author annotations. UMAP embedding of single-cell profiles (dots) 
from SCimilarity’s latent representation of PBMCs profiled by CITE-seq33.  
b-i, SCimilarity’s annotation accuracy is on par or better than three other 
methods. Left: UMAP embedding (as in a) of cell profiles coloured by 
annotations predicted by SCimilarity (b), CellTypist (d), TOSICA (f), or  

scANVI (h). Right: Percentage (colour bar) and number of author-annotated 
cells (columns) matching annotations predicted by SCimilarity (c), CellTypist 
(e), TOSICA (g), or scANVI (i) (rows). j, Surface marker protein levels of selected 
cell populations. Distribution (y axis) and median level within population 
(colour bar) of author-normalized protein levels for selected markers (rows) 
across cell types (x axis) for author (left) and SCimilarity (left) annotated cells.



Extended Data Fig. 6 | SCimilarity annotations and gene attributions capture 
known biology. a, SCimilarity annotated cell type profiles group by correct 
biological relations. Hierarchical clustering (average linkage with cosine 
distance) of centroids profiles of predicted cell types (leaves) in SCimilarity latent 

space, coloured by lineage. b, SCimilarity cell type important genes match cell 
type specific signatures. Fraction of cell type-specific differentially expressed 
genes (from Eraslan et al.8) (y axis) captured by top-n important genes (x axis) for 
that cell type by SCimilarity’s integrated gradients attribution analysis.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Fibrosis-associated myofibroblasts correlate with 
presence of fibrosis-associated macrophages across tissues and diseases.  
a, Myofibroblasts are prevalent across tissues and diseases. Number of cells 
(circle size) across tissues (outermost blue circles), disease states (middle green 
circles), and individual studies (innermost circles, coloured by fraction of cells 
annotated as fibroblasts or myofibroblasts with SCimilarity scores >95th 
percentile of total fibrosis-associated myofibroblast query scores (log scaled 
colour bar)). Circle size for disease and study are scaled relative to other diseases 
in the same tissue or studies in the same disease. b, Fibrosis-associated 
macrophages and myofibroblasts are correlated across conditions. Fractions  
of FMΦ-like cells (x axis; FMΦ query hits as a fraction of total cells annotated as 
monocytes or macrophages) and fibrosis-associated myofibroblasts (y axis; 
fibrosis-associated myofibroblast query hits as a fraction of total cells annotated 
as fibroblasts or myofibroblasts) in each in vivo sample (dots, coloured by 

condition) containing >50 monocytes/macrophages and >50 fibroblasts/
myofibroblasts with a linear fit (black line) and 95% confidence interval round 
the fit (grey band). Inset box: Pearson correlation (r2) and nominal two-sided t 
test p-value for the correlation. c,d, SCimilarity better retrieves a myofibroblast 
query than LLM-based models. c, UMAP of cells from the ILD study GSE128033 
with cells coloured by a myofibroblast signature score (ground truth) or 
similarity to the myofibroblast query state for SCimilarity (right, first), scGPT 
(right, second), or scFoundation (right, third). Top left: Spearman’s ρ between 
signature score rankings and distances to the query cell. d, Distribution of 
myofibroblast signature (first), SCimilarity (second), scGPT (third), and 
scFoundation (fourth) scores as in (c) for n = 28 SCimilarity predicted cell types 
across n = 58,530 total cells (outliers removed). Boxplot: upper/lower quartiles 
(box), min/max values (whiskers), and median (center line).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128033


Article

Extended Data Fig. 8 | FMΦs among monocytes and macrophages.  
a-c, Agreement between SCimilarity and traditional FMΦ cell scores. a, Scanpy 
FMΦ gene signature score (x axis) and FMΦ SCimilarity score using a prototypical 
FMΦ cellular profile defined from Adams et al.1 (y axis) for each cell (density 
shown as colour intensity). b,c, UMAP embedding of n = 2,578,221 monocyte and 
macrophage cell profiles (dots) from SCimilarity’s latent space representation 
coloured by SCimilarity score using a prototypical FMΦ cellular profile defined 
from Adams et al.1 (b) or by Scanpy’s signature score for FMΦ associated genes (c).  
d, FMΦ important genes are enriched for relevant pathways. False Discovery  
Rate (-log10(q value), hypergeometric test, x axis) for enrichment of Reactome 
pathways (y axis, Q ≤ 0.05 and gene count ≥ 4) with the 100 genes with the top 

integrated gradients attribution scores for the FMΦ query (ranked by score). 
Colour: ratio of important genes within a Reactome pathway to the total size of 
the pathway. e-g, Expression of known and novel genes associated with FMΦs. 
Distribution of the fraction of cells (y axis) in ILD tissue samples (dots) among 
n = 500 randomly sampled FMΦ-like (top 10,000 cells by SCimilarity score) cells 
(orange, n = 23 tissue samples) and n = 500 randomly sampled non-FMΦ-like 
(remaining cells) macrophages and monocytes (blue, n = 13 tissue sample) that 
express (>0 UMI counts) the known FMΦ marker TREM2 (e) and two FMΦs-
enriched genes not previously described for FMΦs (f,g). Crossbar: upper/lower 
quartiles (vertical line) and median (horizontal line).
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