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Single-cell RNA sequencing has profiled hundreds of millions of human cells across
organs, diseases, development and perturbations to date. Mining these growing

atlases could reveal cell-disease associations, identify cell states in unexpected
tissue contexts and relate in vivo biology to in vitro models. These require acommon
measure of cell similarity across the body and an efficient way to search. Here we
develop SCimilarity, ametric-learning framework to learn a unified and interpretable
representation that enables rapid queries of tens of millions of cell profiles from
diverse studies for cells that are transcriptionally similar to an input cell profile or
state. We use SCimilarity to query a 23.4-million-cell atlas of 412 single-cell RNA-
sequencing studies for macrophage and fibroblast profiles frominterstitial lung
disease' and reveal similar cell profiles across other fibrotic diseases and tissues. The
top scoring invitro hit for the macrophage query was a 3D hydrogel system?, which
we experimentally demonstrated reproduces this cell state. SCimilarity serves as a
foundation model for single-cell profiles that enables researchers to query for similar
cellular states across the human body, providing a powerful tool for generating
biological insights from the Human Cell Atlas.

Over 100 million individual cells have been profiled using single-cell
(scRNA-seq) or single-nucleus (snRNA-seq) RNA-sequencing analysis
across homeostatic, disease and experimentally perturbed conditions®.
By comparing cell profiles from hundreds of studies, researchers can
connect cell states across different developmental stages, tissues or
diseases, or between the human body and in vitro laboratory mod-
els. Despite this promise and rapid data growth, current models were
not designed to search for similar cell profiles in massive corpora,
and cross-dataset, pan-body, analyses are hampered by challenges in
dataset curation and harmonization, difficulty in defining acommon
low-dimensional representation between datasets, lack of principled
metrics tocompare between cell profiles and no methods to search for
complete cell profiles. As aresult, most aggregation efforts have been
limited in scope, with a few recent exceptions*”’.

To leverage and query the massive scale and richness of single-cell
atlases, we need (1) a foundation model of cell states with an effec-
tive representation for single-cell profiles usable across applications
without retraining; and (2) ameasure of cell similarity thatisrobust to
technical noise, scales to hundreds of millions of cells, and generalizes
to datasets and cell states not observed during training. Unsupervised
methods, such as principal component analysis or autoencoders®™,
faithfully preserve information from the input® ", but do not learn
universal features that encode cells and the similarity between cells

needed to query new datasets. Conversely, other machine-learning
methods, especially in image processing, have successfully learned
representations of diverse entities and their similarity. In particular,
metric-learning models for facial recognition are trained to embed
imagesinto alow-dimensional space whereimages of the same person
are closer thanimages of different people'. Users query-trained models
with animage notinthe training set to find additional images that are
nearby in the embedding and depict the same person. Analogously,
metric learning could provide a meaningful metric for the similar-
ity between cells, by training a model using annotated sc/snRNA-seq
datatolearnalow-dimensional representation that places similar cell
profiles near each other and dissimilar ones farther apart. If learned
from asufficient diversity of cell profiles, such arepresentation should
provide a foundation model of cells that allows efficient searches for
cells with similar expression states (Fig. 1a).

Here we introduce SCimilarity—a deep-metric-learning founda-
tion model that quantifies similarity between single-cell profiles and
provides a single-cell reference to query for comparable cell states
across tissues and diseases. We illustrate the power of SCimilarity by
searching alearned reference of 23.4 million cells with query profiles
of macrophage and fibroblast subsets from interstitial lung disease
(ILD)", showing how SCimilarity provides a powerful framework for
scalable cell searchacross organs, systems and conditions to generate
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Fig.1|SCimilarity metriclearning enables cell searchinlarge humanscale
atlases. a, Cell querying with SCimilarity. Left, a query cell profileis compared
toasearchablereference foundation model of 23.4 million profiles from

412 studies. Middle, samples with similar cells areidentified and returned with
information about the original sample conditions, including tissue, in vitro or
diseases contexts. Right, aSCimilarity score is computed between the query
celland eachcell withinatissue sample. b, Triplet loss training. Left, 56 training
and15test datasets with Cell Ontology annotations from across the body are

biological insights and experimentally testable hypotheses from the
Human Cell Atlas.

A similarity metric for scRNA-seq

SCimilarity blends unsupervised representation learning and super-
vised metric learning through simultaneously optimizing two objec-
tives: (1) asupervised triplet loss function, which is used to embed
expression profiles from matching cell types close together, integrating
cells of the same type across studies™; and (2) an unsupervised mean
squared error (MSE) reconstruction loss function, which encourages
the model to preserve variation from the input expression profiles,
capturing subtler differencesin expression patterns within cells of the
same type (Fig. 1b and Methods). Increasing the relative weight of the
reconstruction lossimproves querying performance, whileincreasing
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used asinput. Middle, cell triplets are sampled, each consisting of ananchor
cell (A), apositive cell (P, anchor-similar) and a negative cell (N, anchor-
dissimilar), based on Cell Ontology annotations. Only non-ambiguous
relationships are allowed. Right, triplets are used to train a neural network that
embeds similar cells closer than dissimilar ones, forming a foundation model.
T, regulatory T cells. The loss functionis computed usingacell triplet, a
reconstructed anchor cell profile (A), and a weighting parameter (B) to
balance the tripletloss (Ly;,..) and the meansquared error loss (Lysg).

therelative weight of the triplet lossimproves performance on dataset
integration metrics'. We focused on a single (8= 0.001) model that
best combined query sensitivity and integration performance (below).

We trained SCimilarity with tens of millions of cell triplets sam-
pled from data with author-provided standardized cell type anno-
tations from the Cell Ontology" (Fig. 1b and Methods). Each triplet
consists of an anchor, a positive and a negative cell: the anchor and
positive cells are similar cells (that is, the same cell type) from differ-
ent studies, while the anchor and negative cells are dissimilar (that
is, different cell types; from the same or a different study). Even with
standardized Cell Ontology terms, some cell type comparisons are
ambiguous due to differencesinannotation granularity (for example,
itis ambiguous whether cells annotated as ‘T cell’ in one study and
‘CD4"T cell’inanother are similar or dissimilar). SCimilarity therefore
excludes triplets with positive and negative labels that have a vertical,



ancestor-descendant relationship in the Cell Ontology, and learns only
fromcells that are either explicitly similar or unambiguously dissimilar
(Fig.1b and Methods). This eliminates the need to manually flatten or
harmonize every cell type annotation and seamlessly scales the train-
ing set across studies.

Training onalarge, diverse atlas

To test the SCimilarity framework, we aggregated sc/snRNA-seq data-
sets across human biology. We focused on studies generated using
one experimental platform (10x Genomics Chromium droplet-based
sc/snRNA-seq), mostly sourced from the Gene Expression Omnibus
(GEO)® or CELLXGENE", These datawere generated with similar library
preparation protocols and computational pre-processing pipelines®.
There were 753 datasets matching our criteriaas of 23 March 2021. The
number of samples and cells matching our criteria has at least doubled
every 6 months between December 2018 and March 2021 (Extended
DataFig.1a,b). We programmatically downloaded 13,401,599 cell pro-
files from 333 of the studies with their respective GEO metadata and
unnormalized gene count matrices (Methods and Supplementary
Table1), and manually ingested another 66 studies from either CELLx-
GENE” or other large studies and consortia (Methods) to a corpus of
412 studies comprising 23,381,150 cells from 5,142 tissue samples with
184 unique Tissue Ontology terms* and 132 Disease Ontology terms?
(Fig. 2, Extended Data Fig. 1c and Supplementary Table 1).

We trained SCimilarity models with atraining set of 7,886,247 single-
cell profiles from 56 studies (46 scRNA-seq and 10 snRNA-seq) with
203 Cell Ontology author-annotated terms" (each appearing in at least
two datasets) (Extended Data Fig. 1d and Supplementary Table 1). We
sampled 50,000,000 of the most informative cell triplets (Methods)
weighted by study and cell type (to mitigate dataset size imbalances),
requiring that the anchor and positive cells in each triplet are from
two different studies, and using hard triplet mining', so that only the
most informative triplets are used when updating model gradients
(Methods). Cell Ontology annotations are required only in training,
butusingatrained SCimilarity model on new datasets requires neither
authorlabels nor fine-tuning. For evaluation, we withheld 15 validation
studies (13 scRNA-seq and 2 snRNA-seq) from training, comprising
1,415,962 cells with Cell Ontology annotations (Fig. 2). We excluded
samples profiling tumours, cell lines or induced pluripotent stem
cell-derived cells from the training and test sets, because their cell
identity may be ambiguous.

Loss functions for sensitive cell search

Testing 18 different parameter combinations for SCimilarity’s objective
function, varying the margin (a) and relative weighting of the recon-
structionand tripletloss functions () revealed that the two loss func-
tion components gave rise to different model behaviours (Extended
DataFig.2a-c). Using the 15 validation studies, we assessed the models
ability to search for cells similar to an input profile (query) and to mix
similar cells across studies in alow-dimensional space (integration)
(Extended Data Fig. 2b,c). We reasoned that a good similarity metric
should both allow searching for similar cells and group together similar
cells from different studies.

To evaluate querying, we compared searches with SCimilarity to
gene signature scoring (Methods), aiming for a higher correlation
between these two quantities (however, cell querying does not depend
on predefined signatures or annotations). To evaluate integration
across datasets, without the need to harmonize cell type annotations,
we applied several benchmarks: an ontology-aware variation of aver-
age silhouette width' (ASW) and the established normalized mutual
information (NMI), adjusted Rand index (ARI) and graph connectivity
benchmarks, which measure the extent of study mixing within each
cluster (Methods).

Models with higher reconstruction loss weighting (lower ) per-
formed better onthe query task, whereas those with higher triplet-loss
weighting (higher B) scored higher on integration benchmarks
(Extended DataFig. 2c). Pure tripletloss (8 =1.0) does not reliably pre-
serve subtle cell state differences but does cluster cells of the same
type closely together. MSE loss complements this by preserving subtle
gene expression patterns. We selected a SCimilarity model that opti-
mized the combined query and integration task scores (8= 0.001and
margin = 0.05; Methods and Extended Data Fig. 2b,c).

For querying, SCimilarity’s metriclearning architecture more faith-
fully encoded cell similarities in the latent space than existing founda-
tion models. SCimilarity’s prediction of similarity to the query cell
state matched the retrieval gene signature scores much more highly
(Spearman’s p = 0.77) than previous foundation models (p = 0.54 for
scFoundation and p = 0.59 for scGPT; Extended Data Fig. 2d) with far
fewer cells incorrectly scored highly (Extended Data Fig. 2e).

Forintegration, we compared SCimilarity’s pretrained representation
to Harmony?®, scVI'°, scanorama®* and scArches on two kidney data-
sets®?, two peripheral blood mononuclear cell (PBMC) datasets??, two
lung datasets** and all 15 held-out datasets. Inall four cases, SCimilarity
had more coherent cell type clusters as measured by higher cell type
ASW, comparable graph connectivity, but less mixing betweenstudies in
low dimensions (higher NMI, ARIand batch ASW; all measures of batchi-
ness) (Fig.2b), albeit comparable to many of these dedicated integra-
tion methods (which, by definition, see the test datain their training).
As anegative control, SCimilarity, along with Harmony and scArches,
did not artificially mix distinct B celland regulatory T cell populations
filtered fromtwo different datasets (Extended Data Fig. 3g). Scanorama
andscVlexperienced such cross-population mixing. Notably, SCimilar-
ity’s integrated simply by embedding the cells in the common space
without learning the integration from the data or fine tuning.

Thus, SCimilarity’s loss function decouples faithful cell representa-
tion (query) from sample mixing (integration) and learns features that
capture meaningful biology, reduce technical noise and generalizes to
dataheld out of the training set.

Generalization across platforms

SCimilarity was trained on both scRNA-seq and scRNA-seq studies
(Supplementary Table 1) and embeds both data types well, as dem-
onstrated for profiles generated for the same human sample using
multiple sc/snRNA-seq protocols®. Within SCimilarity-annotated cell
types, the pairwise embedding distances were only slightly higher
for nucleus-to-cell profile comparisons than for nucleus-nucleus or
cell-cell distances (Extended Data Fig. 3a).

SCimilarity’s learned representation also generalizes well to test
datafrom multiple other profiling platforms, based on the embedding
distances and annotation precision for ahuman PBMC sample that was
profiled using seven platforms and chemistries® (10x Chromiumv2,10x
Chromiumyv3, CEL-Seq2, Drop-Seq, Seq-well, SMART-Seq2 and InDrops)
(Extended Data Fig. 3b-f). Data from all platforms were embedded
effectively, although average within-platform nearest-neighbour
embedding distances were slightly higher in non-10x platforms,
with the highest distances for Seq-well and the non-UMI, full-length
SMART-Seq2 data (Extended Data Fig. 3c,d). Cross-platform anno-
tation precision was consistent for most cell types (except rare con-
ventional (cDCs) and plasmacytoid dendritic cells) (Extended Data
Fig. 3e,f). Thus, while SCimilarity was trained exclusively on 10x
Genomics Chromium data, it effectively generalized to other single-cell
profiling platforms.

Integration without batch correction

SCimilarity quantifies a confidence level for each cell’s representa-
tion, providing both outlier detection and an assessment of the
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representation’s relevance to new data. Using SCimilarity’s score to
quantify how distant a query cell is from the training data distribu-
tion provides a heuristic about the quality of the representation—
a cell scoring highly similar to cells seen during training can be more
confidently represented. Overall, 79.5% of in vivo holdout cells had high
representation confidence. Tissue samples with low representation
confidence, such as stomach (n = 0 training studies), fetal gut (n=1)
andbladder (n = 0) were either absent or poorly represented in training
(Fig. 2cand Methods). Similarly, 43.8% of in vitro cell profiles had low
confidence due to poor matching to the training set (which excluded
in vitro samples). Leveraging this ability, we assembled an atlas of
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30 human tissues (Supplementary Table 2) and shared their embed-
dings as part of the SCimilarity distribution.

Cell type matching through similarity

SCimilarity annotated query cell types by finding the cells in the
annotated reference that are most similar to their profiles (Fig. 3aand
Methods). Thisapproach differs fromestablished annotation methods
becauseit (1) relies on a large, pan-body annotated cell repository;
(2) uses ameasure of expression similarity; and (3) annotates at the
single-celllevel rather than at the subset level. Thus, users can see which
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individual cells, studies and tissues are driving the annotation. As each
cellis annotated independently, no clustering is required. A user can
annotateacell’s profile by comparing it to a desired subset (for example,
for a tissue-specific query) or to the entire annotated cell reference.
Finding the most similar cellsis the same as retrieving the query cell’s
nearest neighbours. This is extremely efficient with hnswlib*, where
searching a precomputed approximate nearest-neighbour index of
SCimilarity’s full annotated reference takes just 20 ms (Methods).

Assingle, pretrained SCimilarity model annotated cell types com-
petitively with tissue-specific models from established methods. For
example, when limiting potential cell types to author-selected labels,
86.5% of SCimilarity’s predicted labels from healthy kidney samples'
matched the author-provided ones (Fig. 3b—d and Methods), com-
parable to the accuracy of scANVI (85.2%), CellTypist (90.4%) and
TOSICA (87.2%) models directly trained on this dataset (Extended Data
Fig. 4c-h). In closely related cells (monocytes versus macrophages
versus DCs, fibroblasts versus myofibroblasts, natural killer (NK)
cells versus NK T cells versus CD8" T cells), all methods showed con-
siderable discordance with author-provided labels, suggesting that
those annotations may be imprecise. Indeed, the author-annotated
¢DCs expressed a mix of macrophage (CD68, CD163, C1QA, MS4A7)
and DC (CDIC, CLEC9A, CLECIOA, FCERIA) markers, and each method
resolved this ambiguity differently (Extended Data Fig. 4i,j). SCimi-
larity also competitively recovered fine-grained author annotations
supported by surface protein markers, performing on par or better
than other methods across 22 immune cell subsets from a CITE-seq
dataset that was held out of training® (Methods) with an annotation
accuracy (75.3%) outperforming scANVI (52.2%), Cell Typist (59.1%) and
TOSICA (44.4%) (Extended Data Fig. 5a-i). Some closely related states
(memory versus naive T cells; CD56" %" versus CD564™ NK cells) were
less precisely predicted by all methods, and may not be fully resolved
by surface markers (Extended Data Fig. 5j). Similarly, author-provided
and SCimilarity annotations matched well across all 15 test datasets,
spanning 73 Cell Ontology terms, on par or better than other annota-
tion methods (Fig. 3e).

We used SCimilarity’s cell type assignment to rapidly annotate all
23.4 million cell profiles using one model, labelling 14,078,941 unan-
notated profiles and reannotating 9,302,209 author-annotated pro-
files (Methods) to acommon set spanning 74 cell type labels across 21
coarse-grain lineages from 30 simplified tissue categories (Extended
DataFig. 6a).

Interpretable features drive SCimilarity

To probe SCimilarity’s model and annotations, we quantified the impor-
tance of each gene for each cell type using Integrated Gradients**—an
explainability method that identifies theimpact on model predictions
from small disturbances to the input expression profiles (Methods). For
example, the top gene attributions that distinguish lung alveolar type
2 (AT2) cells are surfactant genes SFTPA2, SFTPA1, SFTPB and SFTPC,
consistent with known AT2 cell function®. SCimilarity learned these
without previous knowledge of cell-type-specific genes, signatures
or highly variable genes. Overall, SCimilarity’s top importance genes
agreed well with differentially expressed marker genes for 17 different
matched types® with the exception of rare neuroendocrine cells (n =90
cellsintraining) (average area under the curve (AUC) = 0.84; Extended
DataFig. 6b and Supplementary Table 3).

Cell search across tissues and diseases

We used SCimilarity’s embedding to query for cells across the
23.4-million-cell reference (Fig.4a), leveraging the fact that, with metric
learning, the most similar cells are the nearest-neighbours of a query
cell. As a query, the user can select either an individual cell profile or
acentroid of multiple cell profiles. The SCimilarity software provides
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tools for calculating query profiles, performing searches, filtering
results by metadata and absolute distance, and evaluating the query
and the results, including metrics to assess whether the query popu-
lation is homogenous enough to yield reliable results, and how novel
their query profile is (Methods).

As case studies, we focused on macrophages and fibroblasts inILD,
given their roles in tissue repair, regeneration and fibrosis®*¥. In par-
ticular, recent scRNA-seq studies in many fibrotic diseases, including
lung fibrosis, cancer, obesity and COVID-19, have reported seemingly
similar SPPI" fibrosis-associated macrophage (FM) populations"$*,
However, because each study defined them with different nomen-
clatures and gene signatures, it is unclear how similar they are and
whether the same cells are broadly present across tissues, especially
fibrotic conditions.

To study this, we searched our model with an FM cell profile across
2,507,171 invivo cell profiles annotated by SCimilarity as monocytes
or macrophages (Fig. 4a,b). Asaquery, weinput the centroid of amac-
rophage cell subset! (query coherence: 94.7%), chosen using a gene
signature of extracellular matrix remodelling and fibrosis-associated
genes (SPP1, TREM2, GPNMB, MMP9, CHITI and CHI3L1; Methods). In
2 s, SCimilarity computed the pairwise similarity of our query pro-
file to each of the 2.5 million profiles (Fig. 4b). Alternatively, identi-
fying the 10,000 cells with the highest SCimilarity score out of the
23.4-million-cell reference takes 0.05 s (Methods). By comparison,
scoring each cell in the corpus with a literature-defined FM gene sig-
nature took 2 hand 46 min (not shown). The gene signature and SCimi-
larity scores are broadly correlated (r=0.50, P <107>°°; Extended Data
Fig.8a-c), showingthat this granular cell state, notjust the cell type, is
wellrepresented in SCimilarity’s query score and embedding.

The SCimilarity search showed that FMs are common in ILD lung
samples, aswell as presentin some cancers, including uveal melanoma,
pancreatic ductal adenocarcinoma (PDAC) and colon cancer (Fig. 4c-e
and Supplementary Table 4). Of the top 1% of monocytes and mac-
rophages most similar to our query, 93.7% were from lung tissue and
81.2% from ILD and COVID-19 lung samples. The prevalence of FM-like
cellsin the lung varied by disease: FM-like cells were 20% and 4% of
monocytes and macrophages in two systemic sclerosis (SSc) studies,
6.6% on average (s.d. = 4.8%) across 12 ILD studies (excluding SSc),
0.97% on average across six COVID-19 lung studies (s.d. = 0.25%, 0%
innon-lung COVID-19 data) and 0.40% in 22 lung studies annotated as
healthy, normal or withno disease annotation (s.d. = 0.15%). While abun-
dantinSSclungs, FM-like cells were much rarer (0.14% of myeloid cells)
in SSc skin*®. Notably, there were some FM-like cells in other fibrotic
diseases and tissues, such as one primary PDAC tumour* (0.85% of
1,171 myeloid cells) and one liver metastasis*® of PDAC (0.5% of 1,199
cells). Thus, while our query was derived from IPF samples, it identi-
fied FM-like cells in many contexts, confirming previous observations
of FMs in lung injury**’ and suggesting a role for FM-like cells across
other organs and diseases.

Searching for multiple cell states helps relate them across tissues, as
we found by querying afibrosis-associated myofibroblast query profile,
defined as the centroid of cells' expressing a corresponding gene sig-
nature (ACTA2, CDH11,ELN,LOXL1, TNC,ASPN, COMP, CTHRCI,POSTN,
COLIAI, COL3A1and COL8AI; query coherence: 77.0%). SCimilarity dis-
tances were substantially more correlated with the myofibroblast gene
signature scores (p = 0.36) compared with those of scGPT (p =-0.19)
and scFoundation (p =-0.17) (Extended Data Fig. 7c) and captured
relevant cell types more specifically (Extended Data Fig. 7d). The pres-
ence of myofibroblasts correlated with the presence of FMs in other
ILD datasets, COVID-19 and PDAC (r* = 0.48; Extended Data Fig. 7a,b).

Important FM features match known signatures

We hypothesized that SCimilarity’s detection of FM-like cells across
ILD studies reflects ashared biological state, despite varying markers
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Fig.4|SCimilarity cell searchreveals FMs across ILD and other diseases.

a, SCimilarity cell search. A query cell profile (bottom left) isembedded

into the SCimilarity representation with 23.4 million reference cells. Its
nearest neighbours by distance are tabulated by study, tissue and disease.
b-e, Identification of FMs across tissues. b, SCimilarity scores (y axis, log,, scale
and colour bar) againstan FM query profile for allmonocytes and macrophages
(dots) from1,041invivo tissue samples from 143 studies (xaxis), ordered by

the mean SCimilarity score. ¢, The number of cells (circle size) across tissues
(outermostlight blue circles), disease states (middle green circles) and individual
studies (innermost circles, coloured by the fraction of monocytes and
macrophages with SCimilarity scores >99th percentile of all FM SCimilarity
scores (log-scaled colour bar)). Circle sizes for disease and individual study are
scaledrelativetoother diseasesin the sametissue or studies in the same disease.
d,e, UMAP of all single-cell profiles (macrophages and otherwise, dots) from the

SCimilarity representation for ILD*° (d) and PDAC* (e) studies, coloured by FM
query SCimilarity scores (colour bar). f, SCimilarity’s explainability framework
scores FM-associated genes by importance. The distribution of Integrated
Gradientsattributionscores (yaxis, top; horizontal bars show the mean) for
genes (xaxis, top; columns, bottom) with the top 50 scores for FMs versus lung
macrophages and their membership (red, presence; grey, absence) in published
macrophage signatures (bottom, rows). The left colour bar represents the AUC
for the attribute score match to published signatures. The signature publication
source and Pvalue (two-sided Mann-Whitney U-tests; in signature > notin
signature) across the top 3,000 genes by mean attribution score are shownon
theright. Attributionscores, AUC values and Pvalues were calculated using the
n=500 cells most similar to FMs against n =500 randomly sampled cells from the
fulln=2,578,221cellmonocyte and macrophage query set.
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Fig.5|SCimilarity cellsearchidentifiesin vitro cellsmatchinganinvivoFM
stateand anovelinvitrodisease model. a, Identification of FM-like cellsacross
invitro samples with aSCimilarity cell search. SCimilarity scores (yaxis, log,,
scale, colour bar) againstaFM query profile for each annotated myeloid cell
(dot) fromn=40invitrosamples (xaxis) from n=17 studies, ordered by the
mean SCimilarity score. The grey boxes show day 0 and day 5samplesfroma
3D-hydrogel culture system? b-f, 3D conditions yield FM-like cellsin vitroin
validationexperiments. b, SCimilarity scores (yaxis, log,, scale, colour bar)
againstan FM query profile for eachannotated myeloid cell (dot) in the original
3D-hydrogel culture system dataset?from n=2independent donors at day 0 and
day5andfromn=3independentdonorsinthe day 8 validationexperiment

and nomenclature. To explore this, we used Integrated Gradients to
quantify gene importance in distinguishing FMs (Methods), yield-
ing genes enriched in fibrotic processes (for example, MMP7, FNI),
lipid metabolism (such as APOE, LPL) and damage recognition (for
example, MARCO, MSRI) (Fig. 4f, Extended Data Fig. 8d and Supple-
mentary Table 5). These include known markers (TREM2) and novel
genes (HLA-DQA1and RGSI) with higher detectionratesin FM-like cells
(Extended DataFig. 8e-g).
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(xaxis).c, Themean expression (dot colour) and percentage of cells (dot

size) expressing genes (rows) with a high SCimilarity attribution score for
distinguishing FMsin vivo (asin f) inmyeloid cells in the original 3D-hydrogel
culture system?and in the validation experiment (columns). d-f, UMAP
embedding from SCimilarity’s query model latent space of cell profiles (dots)
fromday O (d) or day 5 (e) of the original 3D-hydrogel culture system?, or from
day 8 (f) of the replication experiment, coloured by FM SCimilarity score (colour
bar).g, Replication of original finding of HSC expansion. The proportion of
HSCsinn=2donorsfromref.2atday 0 and day 5and n=3 donorsfromthe

day 8 validation experiment.

The mostimportant genes significantly overlapped with published
gene signatures describing similar macrophage populations or with
genes of which the differential expression defined each study’s mac-
rophage population of interest (Supplementary Table 6). Published
signatures derived from seven studies had a high signature match
(AUC > 0.8), while negative control signatures of M2 and M1 mac-
rophages® ranked in the bottom three (AUC = 0.64 (P=0.0062) and
0.53 (P=0.36), respectively; Fig. 4f).



Search for ex vivo human cell model

Researching the role of novel cell states like FMs in disease requires
modelling, perturbing and studying themin vitro, butidentifying cul-
ture conditions remains challenging. To address this, we used SCimi-
larity to find FM-like cells within in vitro samples. After relaxing the
SCimilarity score threshold to account for differences betweenin vitro
andinvivo cells, weidentified 41,926 monocytes and macrophages from
40 samples across 17 studies, from lung organoids to ex vivo treated
leukaemia cells®, to stimulated PBMCs*2.

The cells most similar to our query were from PBMCs cultured for
Sdaysina3D hydrogel system designed to expand haematopoietic
stem cells (HSCs)? (Fig. 5aand Supplementary Table 7). This was asur-
prising result, as this study was unrelated to lung biology, the cells are
rare in peripheral blood and there were no findings reported about
myeloid cells. While no FM-like cells were present among myeloid cells
on day 0, 15% of cells grown for five or more days were similar to FMs
(SCimilarity score of >25) and expressed TREM2, GPNMB, CCL18 and
MMP9 (Fig. 5b—e).

We validated SCimilarity’s prediction by experimentally replicating
the 3D hydrogel system? and profiling cultured PBMCs by scRNA-seq
(Fig.5b,c,f). While the relative cellular abundances differed between the
original day 5 data*and our day S replication (Methods), 10.1% of all cells
inthe day 8 experiment were predicted as HSCs by SCimilarity (Fig. 5g),
and 41.5% of the myeloid cells were predicted as FM-like macrophages
(Fig.5b,f; n=3donors;37.1%,42.5% and 44.9%; SCimilarity score > 25)
and enrichment for FM hallmark genes, such as CCL18, GPNMB, SPP1
and TREM2 (Fig. 5¢). This demonstrates SCimilarity’s ability to inter-
rogate publicly available data at scale, query areference of invivo and
in vitro data for biologically similar conditions, and help to identify
experimental conditions to reproduce those resultsin the laboratory.

Discussion

SCimilarity offers aunique approach based on metriclearning for cell
searches across hundreds of studies, thousands of samples and tens of
millions (and more) of cells. Query cell states can be defined based onan
individual cell profile (although these may lack robustness), metacells®,
clusters or a group of highly similar cells defined by a gene signature.
Toensurereliable results, SCimilarity assesses aquery’s coherence and
the model’s confidence in the cell’s representation. Using a cell’s full
expression profile captures its full complexity, bypassing the need for
curated (and biased) gene signatures. SCimilarity can generate arobust
signature for a cell state using an explainability technique. As public
dataarediverse and different biological questions may have different
assumptions, SCimilarity enables users to make case-by-case decisions
on proper study, sample, or cell filtering and SCimilarity score cut-offs
appropriate to their investigation. To ensure high quality, we have
removed any sample duplicationacross training and test sets; however,
there are duplicated samples within our full reference dataset asa con-
sequence of including published datasets in toto. We made SCimilarity
available as an open-sourced Python APl with tutorials for querying,
embedding, annotating and ranking cell profiles. The API facilitates
tailored queries by k-nearest neighbours (k-NN), exhaustive searches,
metadata filtering, score-based filtering and visualization tools, and
eachqueryresultistraceable tothe original dataset for further analysis.

SCimilarity’s cell queries open the way for systematic exploration of
transcriptionally similar populations across the vast Human Cell Atlas
by showing that an identified population is reproducibly present in
otherstudies™; connecting results fromindependent studies, such as
observational and functional ones; and identifying contexts in which
the same population may be active. Weillustrated this with our search
for FM-like cells across the atlas, leading to explanatory marker genes, a
cell culture system that elicits asimilar state in vitro, and identification
of similar cells in other fibrotic lung diseases, COVID-19 and multiple

tumour types (especially PDAC®), suggesting abroader role for these
cellsinthe damage response and tissue remodelling processes. Notably,
previous foundation models did not perform well onidentifying cells
similar to FM or myofibroblasts, both expanding to less similar cells,
and missing more similar ones.

As SCimilarity can generalize to cells and datasets not seen in the
training, cell profiles can be filtered or added without recomputing
the existing embeddings. Downstream tasks, such as cell type anno-
tation, cell queries and gene signature derivation all are simplified
using SCimilarity’s generalized representation and can be applied to
cells not seen during training without informing the model about the
importance or variability of specific genes. We trained SCimilarity on
bothscRNA-seqand snRNA-seq data collected by 10x Genomics Chro-
mium data (of varying tissue coverage) and it was able to handle test
data from profiles collected by other scRNA-seq platforms that were
notincluded in training. Nevertheless, users should always interpret
cross-technology integrations with care. The strong performance of
SCimilarity’s learned representation for both theintegrationand query-
ing tasks may suggest that it can perform well for other tasks, but these
need to be assessed in future studies.

By training on Cell Ontology annotations from many published
studies, SCimilarity learns a consensus of how experts define agiven
cell type. For annotation tasks, the set of labels that SCimilarity can
predictis by necessarily limited by available Cell Ontology terms and
experimental observation of cell states across studies. Conversely, cell
queryingis annotationindependent, and can use any profile, irrespec-
tive of whether the cell state is in the Cell Ontology or observed in
training. Note that we deliberately withheld cancer cells and cell lines
fromtraining due to lack of clear cell type identity and these may not
be well represented in the current model. In our experience, we see
poor performance on fetal samples, granulocytes, haematopoietic
stem and progenitor cells, and intermediate precursor cell states,
probably because most training data were sourced from adult tissues
and due to ambiguity in lineage commitment of non-differentiated
populations, respectively. While SCimilarity’s APl provides guidance
to assess the coherence of a query cell profile, the quality of query
results ultimately depends on the assumptions and quality of the
input profile. An input cell profile can be derived from a single cell,
the centroid of a cluster, or an aggregation of cells scored and filtered
by a user-defined gene signature—all of which require some subjec-
tive selections that can influence downstream analyses. As larger
SCimilarity representations are trained on the growing Human Cell
Atlas, the model will allow querying and searches on expanded swaths
of human biology.
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Methods

SCimilarity model design

Model architecture. The SCimilarity model consists of one fully
connected encoder and one decoder stage and reuses the same en-
coding network three times per training triplet, such that updates to
the model after each batch are shared equally for each subsequent
batch of training triplets. The decoder stage is not part of the con-
ventional triplet loss architecture, but is included to compute a MSE
reconstruction loss.

Expression profiles are reduced through an encoder network, start-
ing from 28,231 genes through four hidden layers with dimensions
1,024,1,024,1,024 and 128. The 128-dimensional outputs are unit length
normalized, forcing all low-dimensional cell representations to lie
on the surface of a hypersphere. During training, the input layer is
subjected to 40% dropout, zeroing out many gene expression values
atrandom and each hidden layer is subjected to 50% dropout rates for
maximum regularization®.

While hyperspheric spaces have been infrequently used for repre-
sentation of single-cell profiles®®, the triplet-loss model often uses
hypersphere embeddings to ensure consistency between the model
hyperparameters'. During triplet-loss training, the objective is to place
cells of different types sufficiently far apart. The minimum desired
distance between cells of different types is called the margin. By fix-
ing the volume of the embedding space to the surface of aunit length
128-dimensional hypersphere, the marginis interpreted consistently
between model runs. Without normalization, cells can be placed up to
aninfinite distance apart, rendering the margin meaningless.

Triplet-loss training. To learn features that place datapoints consid-
ered similar near each other, the loss function depends on distances
between data points embedded in alearned low dimensional latent
space, described with equation (1):

d(x,y) =11£) -3 (€)

where x and y are two high-dimensional vectors (here, cell profiles),
passed through a neural network encoder f{).

Thetriplet-loss modellearns fromthree vectors atatime: the anchor
(x{), positive (x?) and negative (x/"). The anchor and positive vectors
are considered to be similar, whereas the anchor and negative are
dissimilar.

Themodel parameters areiteratively updated to decrease the num-
ber of triplets where the distance between the anchor and negative
datavectorsisinsufficiently large relative to the distance between the
anchor and the positive points, therefore minimizing the triplet-loss
function defined in equation (2):

Z:V max(d(x{, xP) -d(x{, x}) +a, 0)
triplet = N

L (2)

where ais the margin, which denotes how much further the negatives
should be from the anchor than the positives, and i is the index of the
triplet.

Reconstruction loss training. The reconstruction loss is computed on
the anchor cell only, because each anchor cell is used only once as an
anchorwithinabatch. Thereconstructionlossis definedin equation (3):

N
L IXE - g(F X3
Lyse = 2, }f(f 2 (3

where Nis the number of anchor cells in abatch, set to N=1,000 in
SCimilarity, and g() is the function learned by the neural network
decoder stage.

Combined loss function. Adding areconstructionloss to classification
models has been shown to improve generalization® through aregulari-
zation effect. The SCimilarity loss function combines the triplet loss
and reconstruction loss functions as defined in equation (4):

L=(1 _ﬁ) X LMSE +ﬁ X Ltriplet (4)

where Sisaweightingtermin [0, 1]. Training and validation curves for
tripletloss, reconstructionloss and the percentage of hard triplets were
constructed for varying values of §in [0, 1] (Extended Data Fig. 2a),
where =0 corresponds to a conventional autoencoder and 8 =1cor-
respondstoapuretriplet-loss model. Empirically, 8=0.001 performed
bestonthe cell searchtask (query model) and  =1performedbest on
batchintegration (Extended Data Fig. 2¢).

Cell Ontology terms and relationships

Authors may annotate cell types at different granularities, which con-
foundstriplet sampling by introducing cell type annotations with hier-
archical relationships that cannot be unambiguously defined as either
similar or dissimilar. As such, cell type annotations used for training
are defined using standardized Cell Ontology terms and valid triplets
are restricted to cells without vertical Cell Ontology relationships
between the members of the triplet. A vertical relationship is defined
asany directed path of one or more ancestor-descendantrelationships
inthe Cell Ontology network. Thus, there are three binary relationships
defined for annotation: (1) similar pairs withidentical annotations (for
example, T celland T cell); (2) dissimilar pairs with non-vertical ontology
relationships (for example, ‘CD4-positive, a3 T cell’and ‘CD8-positive, afp
T cell’); and (3) ambiguous pairs with vertical relationships (for example,
‘T cell’and ‘CD4-positive, afs T cell’). Positives are drawn from cells similar
to the anchor, negatives are drawn from cells dissimilar to the anchor
and cellsthatare ambiguousto the anchor are excluded fromsampling.

GEO data aggregation

In total, 334 human sc/snRNA-seq datasets were obtained from the
GEO'®. Multiple filtering steps were used to restrict the datasets ana-
lysed to samples from human tissue that were generated using the 10x
Chromium platform and that reported unnormalized gene count data
that could be automatically processed. To select appropriate datasets,
search criteria were designed for the Biopython Entrez search tool®®
to find GEO studies that had specific properties, such as metadata
keywords, file formats and species. Then, using GEOparse®, the GEO
text metadata were downloaded for each sample and searched for
blacklisted words in the metadata or download URLs (for example,
smartseq, trizol and fasta) to further filter out samples that were not
generated using 10x Chromium. Data for samples and corresponding
download links that passed the metadata filter stage were automatically
downloaded. No datasets were realigned. Intotal, 753 studies were iden-
tified for download. A set ofimport functions was designed for the most
common file type formats (.mtx, .h5ad and gene expression matrices
in.tsvor.csv). Any dataset that could not be successfully downloaded
orreadinwasdiscarded. Oncereadin, each sample was automatically
tested for count dataand gene names that match areference gene list
or gene name mapper before saving each fileina uniform.h5ad format
for later processing. This resulted in a total of 334 published studies
that were not duplicates of studies found in CELLXGENEY for use in
our analysis. In the process of curating our reference data, we found
that individual samples have been reposted across studies without
references or arecord of data provenance. We therefore advocate for
improved data management practices in the field.

Data preprocessing

All UMI count data were natural-log normalized per cell with a scal-
ing factor of 10,000 using the scanpy.pp.normalize_to_target(adata,
10000) and scanpy.pp.loglp(adata) functions from scanpy?®.
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Dataaggregation and filtering
Datasets with author-provided cell type annotations used for train-
ing were obtained from Tabula Sapiens”, 10x Genomics®, the
Single-Nucleus Cross-Tissue Atlas® and the Human Lung Cell Atlas™
and subjected to the same preprocessing procedures as program-
matically downloaded datasets. Cell type annotations were manually
converted into terms contained within the Cell Ontology. Cells with
annotations that did not clearly map to the Cell Ontology were not
includedin training.

Cell profiles previously annotated as doublets, scored as doublets by
infer_doublets from Pegasus”, had >20% total UMI counts aligned to
mitochondrialgenes or had <500 total genes detected were removed.

Preparation of training and test data

Training and test sets were chosen such that entire studies were held out
oftraining (rather than holding out asubset of cells from each dataset)
(Supplementary Table1); there were 56 and 15 datasets in the training
and test sets, respectively. This presents a harder generalization chal-
lenge and reflects how users are likely to use SCimilarity. Test datasets
were selected to reflect the tissue diversity within the training sets.

Cell Ontology term selection

CellOntology terms were selected for training if they were observedin
atleast two separate studies in the training set. Terms thatappearedin
only one study were not used because SCimilarity is trained by compar-
ing cells across studies. To rescue single-study terms, the immediate
parent terms were inspected across studies. If a single-study term’s
parentwas observedin atleast two other datasets, then the original cell
type annotationwas replaced withthe coarser parent term (Supplemen-
tary Table1) and used for ontology-aware triplet sampling. Otherwise,
all cells with this annotation were removed from training. This process
resulted in 203 Cell Ontology terms used in training (Supplementary
Table1). All203 terms are available to the user for cell type prediction
onnew datasets using the SCimilarity software, with the default terms
used for cell type prediction set to 81 manually curated terms with
similar granularity, for convenience (Supplementary Table 1). As the
size or annotation quality of training data grows, the number of Cell
Ontology terms meeting the inclusion criteriaare expected toincrease.

Semi-hard triplet mining
During training, batches of 1,000 cells are sampled from the training
datasets. This sampling is weighted by study and cell type to have a
similar number of observations per cell type from each study per batch.
Owing to the maximum operation within the loss function, not all
viable triplets contribute to the gradient, and are categorized as easy,
semi-hard or hard, based on their contribution to the gradient.
Easy negatives are defined by equation (5):

PO = FODIE < ILF XD ~F DI +a ©)

Easy negatives provide no information to the gradient because the
distances between the cellsin the low-dimensional embedding already
satisfy the objective, such that the maximum operation returns O to
the triplet loss sum. As there are many easy triplets after training a
small number of batches, randomly sampling triplets does not train
models effectively. To accelerate training, triplets are mined to search
for training triplets that are especially informative for model training™.

Hard negatives are defined by equation (6):

IFXD =F XD > LFXE) - FXDIE +a (6)

Hard negatives contribute the largest quantity to the loss function,
because they do not fit and are far from fitting the desired latent rela-
tionships. In practice, hard triplets are rarely useful for training, because

they contribute to model collapse during training>”*. Hard negatives
may be enriched for incorrectly annotated cells.
Semi-hard negatives are defined by equation (7):

LD —FDIB -1 xH - FXDIB<a 7

Semi-hard negatives contribute small amounts to the loss function
because they nearly satisfy the desired distances between cells in
low-dimensional space. Meaning, the negative cell profileis further from
the anchor cell than the positive cell, but by aless than the margin, a.
Semihard negatives are often used in triplet-loss models'.

Overall, we chose to train SCimilarity using only semi-hard negative
triplets.

Explainability framework

An explainability framework was used to identify genes of which the
variation leads to the most significant variations of the learned features
and, in turn, affects the relative distance between different cells.

An explanation for a pair of cells is defined as those genes that have
the greatest impact on the relative distance between those cells in
latent space. Givend(x, y) = || f(x) —f(y)||§, the distance between two
cellprofilesxandy inlatent spacef, the integrated gradient approach®
was extended to compute the importance of each gene i in the com-
parison between cell profiles x and y as defined in equation (8):

Importance,(x,y)

(8)

l —_
= max((xi—yl.),O)xL . 0d(y+a;;x y).y)

Here a controls aninterpolation process used to average gradients
along a path. High values of Importance;(x,y) correspond to genes
that are highly expressed in x, and their modification (that is, gradi-
ent) affects d(x, y) more. Intuitively, the expression of each gene in
yis gradually increased to match x along the trajectory fromxtoy.
Through this trajectory, the rate of change of d(x, y) is computed
for each gene, aggregating the results. To compute features relevant
across broader contexts, the scoreisscaled by (x;-y,), to achieve global
explainability”. To identify genes that are upregulated in a subset of
interest, genes i with expression x; <y;are ignored.

This approach differs in several key ways from the standard inte-
grated gradient approach, because: (1) gradients are computed with
respecttoalearned distanceinstead of output features; (2) attributions
where x; <y, areignored; and (3) the sign of the integral isignored due
to the complex interactions between features.

Toidentifyimportantgenesforacelltypet,asetofcellsT € {¢,, ..., ty}
withcelltypetandasetofcells B € {b,, ..., by} with cell types different
fromtare randomly sampled. Pairwise importances are computed for
each pair of cells¢;in Tand b;in Band aggregated to obtainasignature
that characterizes cell type t as defined in equation (9):

N
Signature,(t) :% Z Importance(t,, b.) 9)
c=1

As the pairwise comparisons are averaging relative comparisons,
the sampling of {b,, ..., by} impacts the signature scoring. To obtain
general cell type markers, abackground of all cell typesis sampled. To
obtain a cell-state-specific signature, a background of cells in other
states of the same type are sampled. Confidence intervals for each
geneiare computed as the standard error of the mean. This results in
anattribution score for each gene.

Attribution enrichment testing
Gene attributions were calculated using a set of foreground cells and
aset of background cells. Foreground cells were the 500 cells most



similar to the query (FM) among the searched cells (for example, high
confidence in vivo monocytes and macrophages). Background cells
were selected by randomly sampling 500 cells outside of the top 10,000
cells (withininvivo monocytes and macrophages) by SCimilarity score
to the query cell (FM). The AUC enrichment statistic was calculated
based on the 3,000 genes with the highest attributions.

For each published signature, the AUC and one-sided P value were
calculated using Mann-Whitney U-tests according to equation (10):

auc=-2-
nn,

(10)
where Uis the Mann-Whitney U statistic, n, is the number of genes in
the published signature among the 3,000 genes and n, is the number
of genes notin the published signature among the 3,000 genes.

Training and evaluation metrics
SCimilarity score. The SCimilarity score is defined as the inverse of
the cosine distance of two embedded cell profiles as in equation (11):

SCimilarity score = (11)

I_C['XC!'

where c;and ¢; are the embeddings of the ith and jth cell profiles with
unitlength, respectively andi #j. The threshold for similarity varies in
practice by question and cell types.

Ontology-aware ASW. ASW has been used to assess the performance
of data integration tasks on multiple scRNA-seq studies' by quantify-
ing how coherently each set of cells is grouped across studies after
integration. For the batch ASW metric, the sets of cells are grouped by
withinstudy batches, soitis quantifying how coherently each batchis
clustering (alower score here is desired as it means greater mixing).
For cell type ASW, where sets are defined by cell type, we introduce
anontology-aware modification. Here a higher score is desirable as it
means that cells of the same type are more coherently clustered. The
silhouette width of cell profile i of cell type ¢ typically compares the
average intracell type distances a(i) and the average inter-cell type
distances b(i) between cells of type t and cells of the nearest cell type,
defined by equations (12) and (13), respectively:

N -

al)= |CI| -1 jeczhi;éj d(l’j) 12
N -

b =minzl 3 jezc, d(i.j) (13)

where, typically, C;is the set of cells of author-annotated type tand C,
are the cells of all other cell types.

However, the ASW as typically formulated does not account for differ-
encesingranularity of cell type annotations across studies. To address
those, amodified formulationis used where C,contains cell type label
tand all of its ontological descendants and C;is the set of all other cell
types, except cells of type ¢t and any of its ontological descendants or
ancestors. For example, if computing a(i) for a T cell, the distances
betweenalltypes of T cell terms (CD4-positive, a3 T cell, CD8-positive,
B T celland CD4-positive, CD25-positive, a3 regulatory T celland so
on) are members of the T cell term. Ancestor terms of T cells, such as
the term ‘lymphocytes’, are not members of the T cell class (nora T cell
subset) but are excluded from the summation indices in the calcula-
tions of a(i) and b(i).

Correlation with gene signatures. To test how the SCimilarity distance
represents distance between predefined cell states, a signature-based
definition of cell state was correlated with the SCimilarity score (above).

Foreachcellinthetest set, both the signature score”and a SCimilar-
ity score versus the cell query are calculated, yielding two vectors, and
the Pearson’s correlation coefficientis calculated between the vectors.

Model selection. Models were runin triplicate with 18 combinations
of 3 different margins (a € {0, 0.01, 0.05, 0.1) and 6 different S param-
eters (f €{0,0.0001, 0.001, 0.01, 0.1,1.0}) and one query model and
oneintegration model were selected based ontwo criteria. First, query
performance was tested by how well cell similarities to a query FM
profile correlated with a signature defining that same state (TREM2,
GPNMB, SPP1, CCL18, MMP9, CTSK, APOE, CHIT1, LIPA, CHI3L1, CD14,
APOCI). Second, ontology-aware ASW was used to quantify how well
the cells of the same type from different studies intermixed in SCimilar-
ity’s representation. The model with the highest summed query and
integrationscore was selected as it performed much better onthe query
task thanthe other high integration models (Extended Data Fig. 2b,c).
This selected integration model had more study mixing thanthe query
model according to the study (NMI) and study ARI*®.

Data integration benchmarking. SCimilarity was compared to four
batch integration methods: Harmony? (harmonypy v.0.0.9), Scano-
rama?* (v.1.7.4), scVI'® (v.1.1.0rc2) and scArches™ (scVI v.1.1.0rc2). The
modified ASW (above), ARl and NMI were calculated as integration
benchmark metrics. As ‘ground truth’ cell type annotations are required
toassess preservation of biological signal, methods were benchmarked
onthel5teststudies withauthor-provided cell type annotations held
out during SCimilarity training.

Harmony and Scanorama were run using the wrapper functions in
scanpy’®. scVl and scArches were run using the scvi-tools workflow
described in their online tutorials (https://docs.scvi-tools.org). As the
scArches workflow requires a reference dataset, 101,133 cell profiles
were sampled across all training datasets with uniform probability
across studies for use as the reference.

Study ARI, study NMI and cell type ASW were calculated on four
distinctintegration tasks based on five different combination of vali-
dation datasets, four positive control tasks: (1) 143,638 cell profiles
sampled from all 15 test datasets with uniform probability across
studies; (2) two lung datasets"?’; (3) two kidney datasets*?; and
(4) two PBMC datasets®?, all selected from the test studies, and one
negative control task of integrating B cells from one PBMC dataset®
with regulatory T cells from a different PBMC dataset?.

Cell type annotation

Celltype assignments were performed by k-NN classification combined
with anannotated reference set. SCimilarity’s reduced dimensionality
latent space was used to determine k = 50 nearest neighbours in the
reference dataset to a query cell ¢, and the query cell was annotated
either by tallying votes based each cell’s annotation with equal weights
according to equation (14),

1
Cell type(t) = argmtax[z n] (14)

it

or with weights by distance in SCimilarity’s reduced dimensionality
latent space according to equation (15):

1

. d(x, y)] 1

To allow users to annotate new datasets from a restricted list of
cell types of interest, specific cell types can be excluded (blocklist-
ing) or annotations may be limited to specific cell types (safelisting).
When feasible, blocklisting or safelisting is recommended toimprove
interpretability and reduce spurious annotations. However, extensive
blocklisting or safelisting can slow the annotation process substantially,

Cell type(t) = argmax[z
t ye
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because the pre-built k&-NN indices are not optimized for a modified
target cell type list.

k-NN parameters for annotation and query

Two separate k-NN indices were used for efficient and accurate que-
ries. For cell type annotation, a 7.9-million-cell k&-NN index was built
using hnswlib® with ef_construction=1,000 and M = 80. Searching
this k-NN found the 50 nearest neighbours (default behaviour) for cell
type annotation (k= 50) and ef =100.

Cellqueryrelied onaseparate 23.4-million-cell k-NN index also built
using hnswlib. This index was constructed with the following param-
eters: ef_ construction =400 and M =50.The search parameters are set
by the user’s request for how many similar cells to return. The default
behaviourissettok=1,000andef=kbut,in practice, kcan vary widely
depending on the use case.

Cross-technology benchmarking

Comparison of scRNA-seq and snRNA-seq SCimilarity embeddings was
performed using the paired data for sample CLL1from GEO GSE140819
(ref. 30). SCimilarity cell type annotation was constrained to 7 Cell
Ontology terms that were most similar, but more granular than, the
three author-provided annotations (B cell, T celland macrophage). Pair-
wise distance distributions were calculated for up to 1,000 randomly
sampled cell pairs (limited by cell numbers), without replacement,
for the most abundant SCimilarity annotated cell types. Distributions
were generated for pairs of selected populations within annotation
and protocol (cell to cell or nucleus to nucleus), within annotation and
across protocols (cell to nucleus) and across annotation (one cell type
to another cell type) and within protocol.

Profiling platforms were compared using the data for the human
PBMC sample from SCP424%. The distribution of nearest-neighbour
SCimilarity scores was retrieved fromthe k-NN graphbothirrespective
of platform and constrained to within-platform and within-replicate
neighbours. Cell type annotations were constrained to nine Cell
Ontology terms most similar to the author-provided annotations.
Annotation precision was calculated as the percent of cells with
SCimilarity-predicted annotations identical to the Cell Ontology
mapped author-provided annotations within each platform and
replicate separately.

Cell type annotation benchmarking

SCimilarity’s cell type annotation was compared to three cell type pre-
diction methods (CellTypist’” v.1.6.2, TOSICA™v.1.0.0, and scANVI”®
fromscVIv.1.1.0rc2) with three separate classification tasks: (1) anno-
tating cellsinahumankidney dataset®; (2) annotating cellsinahuman
PBMC CITE-seq dataset®; and (3) annotating cell types across all 15
holdout datasets that had author-provided annotations. The same
SCimilarity model was used for both evaluations. A separate model
was trained for each task by each of the other three methods. F; scores
were calculated for each cell type in each test study.

Fortheref. 25kidney test dataset (12,190 cell profiles), cell type anno-
tations were flattened to 22 Cell Ontology terms manually. CellTypist,
TOSICA and scANVI models were trained using 89,520 cells obtained
from four kidney SCimilarity training datasets that were annotated with
cell type terms in the ref. 19 test dataset. For the CZI PBMC CITE-seq
dataset of ref. 33 (94,811 cell profiles), four ambiguously defined cell
populations were removed from the analysis (for example, exhausted B
cells,immature B cells, proliferating T cells and proliferating NK cells)
and cell type annotations were constrained to 22 Cell Ontology terms
identicaltothe author provided annotations. scANVIwas trained using
the scvi-tools workflow (https://docs.scvi-tools.org). Celltypist was
trained using the workflow for custom models (https://colab.research.
google.com/github/Teichlab/celltypist). TOSICA was trained using
the demo tutorial (https://github.com/JackieHanLab/TOSICA). Per-
formance was assessed by F; score for all cell type prediction methods.

For benchmarking across all 15 test datasets (Fig. 3e), 143,638 cell
profiles were sampled with uniform probability across the 15 studies.
These were thenfiltered to cell types found within the test set annota-
tions. New CellTypist, TOSICA and scANVI models were learned with
theremaining 103,116 training cell profiles sampled across all training
datasets, weighted so that each study was equally represented in the
complete training set.

Outlier filtering

Tofilter outlier cells before visualization and downstream analysis,
SCimilarity’s score is used to flag cells that are out of distribution. Cells
with a SCimilarity score <33 from the nearest cell in the training set
were removed before further analysis. Many of these cells were from
immortalized cell lines, and reflect their difference from primary cells
(and absence in the training). Note that if out-of-distribution cells are
notremoved, these cells will not be accurately annotated and can con-
found visualization.

Macrophage query preprocessing

To prepare a cell query for FM cells, a public dataset' (GSE136831 and
https://www.ipfcellatlas.com) was preprocessed with the same steps
for all ingested data and scored use Scanpy’s scanpy.tl.score_genes
function with a gene signature of SPP1, TREM2, GPNMB, MMP9, CHIT1
and CHI3L1in Scanpy™. The average profile of the top 50 scoring cell
was embedded using SCimilarity and used as theinput query to SCimi-
larity’s cell search model and used throughout analyses in Figs. 4 and 5.

Foundation model benchmarking

SCimilarity, scGPT? (v.0.2.1, 23 June 2023 model) and scFoundation®®
(9 December 2023 model) were compared on dataset GSE128033
using the FM and myofibroblast gene signatures and a cell query pro-
file derived from GSE136831. The query cell profile was defined as the
centroid of the top 100 scoring cells using scanpy gene signature in
GSE136831. The query profile and all cellsin GSE128033 were embedded
according to the scGPT reference mapping tutorial (https://github.com/
bowang-lab/scGPT) and the scFoundation get_embedding.py script
(https://github.com/biomap-research/scFoundation) documentation.
Embedding distances were calculated using the Euclidean distance
between the embedded query profile and all cells in GSE128033. Spear-
man rank correlation coefficient values (p) were calculated between
the gene signature score and distances to the query cell state across
all cellsineach model. Cell type annotations predicted by SCimilarity
were constrained to 28 Cell Ontology terms present in lung tissue.

Quality control for query input

Theresults of cell queries depend on the centroids used for the query. To
help users generate effective cell state queries, a statisticis calculated
fromthe query cells (thatis, cellsinagrouping and their centroid). For
robust and meaningful query results, acell state should be a centroid of
acoherent, relatively homogeneous set of cells. To evaluate centroid’s
quality, its underlying cells are subclustered (k=10 clusters), 10 cen-
troids are computed fromthe subclustering and aSCimilarity searchis
conducted for themost similar cells to each of the 10 centroids (default
n =100 nearest neighbours). The mean overlap in cell query results
between the parent centroid profile and each k-means subcluster
centroid is reported as a measure of query stability.

Myofibroblast and FM co-occurrence

Co-occurrence of two cell states was calculated using the results of
two independent queries. The relative frequency of each query (for
example, FMs and fibrosis-associated myofibroblasts) in each sample
was quantified by counting the number of searched cellsin that sample
thatwere highly similar (=95th percentile of SCimilarity scores) toeach
query profile, divided by the number of searched cells in the sample.
‘Searched cells’ for FMs were any subtype of monocyte or macrophage
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(classical monocyte, intermediate monocyte, non-classicalmonocyte,
macrophage or alveolar macrophage) (Fig. 4c). ‘Searched cells’ for
fibrosis-associated myofibroblasts were all cells annotated as fibro-
blasts or myofibroblasts (Extended Data Fig. 5a). Only in vivo tissue sam-
pleswithatleast 50 macrophages and 50 fibroblasts were considered.

Important genes and pathways in FMs

Important genes were identified using SCimilarity’s attribution score
method. This method requires two cell groups to compare, identifying
which genes differ between them. Here we used 500 cells that were
considered to be similar to the average FM profile calculated from a
previous study'as the FM-like group. To compare to the FM-like group,
500 cells were randomly sampled from the full 2.5-million-cell mono-
cyte and macrophage query set.

Reactome pathways enriched for the 100 genes with the top impor-
tance scores for FMs were determined using the method providedinthe
ReactomePA®! R package, with multiple-hypothesis correction using
the Benjamini-Hochberg method and the background gene universe
restricted to the approximately 28,000 genes included in SCimilarity.
Pathways were considered to be significant if they met the criteria of
adjusted Pvalue (Q) < 0.05 and gene count > 4.

3DCS culture of PBMCs

Peripheral blood samples from healthy volunteers were provided
by the Samples for Science (S4S) donor program at Genentech;
donors provided written informed consent and sample collection
was approved by the Western-Copernicus Group Institutional Review
Board. The samples were collected in heparin collection tubes and
subsequently diluted 1:1with a solution of PBS containing 2% FBS and
1mMEDTA. Then, 30 ml of diluted blood was overlayed onto 15 ml of
Lymphoprep (StemCell Technologies) in a 50 mltube and centrifuged
at 3,000 rpm for 20 min at 4 °C. PBMCs were isolated from the inter-
phase after centrifugation and diluted with PBS containing 2% FBS
and 1 mM EDTA and centrifuged at 300g for 10 min at 4 °C. The cell
pellet was washed again with PBS containing 2% FBS and 1 mM EDTA.
Red blood cell lysis was performed on the cell pellet by resuspend-
ingin RBC lysis buffer (Cell Signalling Technology) for 5 min at room
temperature, followed by inactivation with addition of RPMImedium
containing10% FBS. Cells were pelleted by centrifugation at 300g for
10 min at 4 °C and subsequently washed with PBS containing 2% FBS
and 1 mMEDTA. Cells were then resuspended ina10% sucrose solution
at a concentration of 2 x 10 cells per ml right before plating into 3D
hydrogel culture. Puramatrix hydrogel (Corning) was vortexed for
30 sanddiluted 1:1witha20% sucrose solution. Then, 250 pl of diluted
Puramatrix hydrogel was mixed with 250 pl of resuspended PBMCs
and plated in a 24-well tissue culture plate. To induce gelation, RPMI
medium was overlaid onto the hydrogel/PBMC mixture and incubated
for5minina37 °Cincubator with 5% CO,. Overlayed medium was aspi-
rated off the 3D hydrogel and washed twice with RPMI medium, after
which 600 pl of 3DCS medium, formulated as previously described?,
was overlaid onto the hydrogel. Cells were cultured in a 37 °C incu-
bator with 5% CO, for 8 days, with medium exchanges every other
day. On day 8, culture cells were recovered from the 3D hydrogel for
scRNA-seq.

scRNA-seq of the 3D culture system

Wells of the 3D hydrogel culture were washed with PBS, followed by
recovery of the hydrogel and cells by gentle pipetting in PBS buffer. This
solution was centrifuged for 5 min at 750g, and the hydrogel/PBMC pel-
let was resuspended in TrypLE solution (Thermo Fisher Scientific) and
incubated at 37 °C for 10 min. RPMI medium with 10% FBS was added
and the solution was centrifuged for 5 minat 750g. The resultant pellet
was washed twice with PBS to remove hydrogel matrix debris. PBMCs
wereresuspended in PBS and passed through a40 pMfilter, pelleted by
centrifugationat300gfor 5 min and resuspended in RPMI medium with

10% FBS. The cell solution was subjected to FACS to isolate cells from
any remaining hydrogel debris and recovered cells were concentrated
t0 1,000 cells per pl in RPMI medium with 10% FBS for downstream
profiling by scRNA-seq.

scRNA-seq was performed using the Chromium Single Cell 3’ Library
and Gel bead kit v3 (10x Genomics), according to the manufacturer’s
user guide. In brief, the cell density and viability of the single-cell sus-
pensionwere determined using the Vi-CELL XR cell counter (Beckman
Coulter). The cell density was used to impute the volume of single-cell
suspension needed in the reverse transcription master mix, aiming
to achieve around 10,000 cells per sample. cDNAs and libraries were
prepared according to the manufacturer’s user guide (10x Genom-
ics). Libraries were profiled using the Bioanalyzer High Sensitivity
DNA kit (Agilent Technologies) and quantified using the Kapa Library
Quantification Kit (Kapa Biosystems). Libraries were sequenced on
the NovaSeq 6000 (Illumina) system according to the manufacturer’s
specificationswith 28 + 90 bp paired-end reads at adepth of 101 million
mate-pair reads. Sequencing reads were aligned to the GENCODE 27
Basic gene model on the human genome assembly GRCh38 using Cell
Ranger v.6.0 (10x Genomics).

Individual samples were genetically demultiplexing using the sin-
gularity container provided with Souporcell (v.2.0)®2. No genotype
information was provided to the pipeline. As PBMCs were provided
from three donors, a k value of 3 was used to cluster the samples into
three genotypes. These samples were preprocessed consistently with
the previously ingested samples and then embedded using SCimilarity
to enable direct comparisons to ref. 2 as well as the rest of the public
datasets.

SCimilarity cell type classification was applied to both public and
validation cells using SCimilarity with the following safelist: B cell,
CD4-positive, o T cell, CD8-positive, a3 T cell, conventional dendritic
cell, haematopoietic stem cell, macrophage, monocyte, natural killer
cell, plasma cell, plasmacytoid DC.

Code performance benchmarking
Benchmarks were run on servers with 8 Intel Xeon E5-2650 v4 CPUs
with2.20 GHz cores and a total of 128 GB of RAM.

Query runtimes, using the prebuilt approximate k-NNindex* to find
the top nmostsimilar cells, had an average runtime of 50 ms. Some API
functions use the query and summarize the metadata within one func-
tion call. That function timingis dominated by summarizing metadata
and computing statistics fromthe query results, whichrequires anaddi-
tional 3.3 s. This performance differs from an exhaustive comparison
(Fig. 5b), where the query was directly compared against 2.58 million
monocytes and macrophages with aruntime of 2 s.

Cell signatures were calculated using scanpy.tl.score_genes. The
scanpy score_genes function was applied to the already normalized
data. This runtime totalled 2 h, 46 min and 20 s when it was applied
across each .h5ad file (one file per tissue sample). Even though .h5ad
fileswere not stored with any compression, file reading was adominant
factor in runtime.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Invitro data generated in this study have been deposited in the GEO
under accession numbeer GSE280632. Model weights, single-cell data
embeddings, curated metadata and k-NN graphs have been deposited
atZenodo® (https://doi.org/10.5281/zenod0.10685499). Source reposi-
tories and accession numbers for the public sc/snRNA-seq studies used
for model training, model testing or as part of the unlabelled referenced
set are provided in Supplementary Table 1.
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Code availability

Codeandtutorials are available at GitHub (https://github.com/Genen-
tech/scimilarity). A snapshot of the code that accompanies this publica-
tionisavailable at Zenodo® (https://doi.org/10.5281/zenod0.14087552).
Codelicense: Apache 2.0. Pretrained model weights, k-NN and pre-built
indices license: CC-BY-SA 4.0.
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SCimilarity predicted celltypes across n = 58,530 cells (outliers removed).
Boxplot: upper/lower quartiles (box), min/max values (whiskers), and median
(centerline).
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Extended DataFig.3|SCimilarity integrates and annotates across profiling
methods. a, SCimilarity integrates snRNA-seq and scRNA-seq. Distribution of
pairwise SCimilarity embedding distances for randomly sampled cell (sc-sc),
nucleus (sn-sn) or cell-nucleus (sc-sn) profile pairs (max n=1000, without
replacement) within SCimilarity-annotated B cells (first), classical monocytes
(second), CD4+T cells (third), or CD8+ T cells (fourth) from patient tumour CLL1
inSlyperetal.,2020%°; overlayed with similarly sampled cell or nucleus pairwise
embedding distances between B cells and classical monocytes (first, second) or
CD4+Tcellsand CD8+T cells (third, fourth). b-f, SCimilarity generalizes well to
scRNA-seq test data collected by seven different methods. UMAP embedding

of PBMC profiles from one sample profiled by seven different scRNA-seq
methods® coloured by platformand replicate (b) and nearest-neighbour
distancein SCimilarity’s latent space (b); d, Distribution of nearest-neighbour
distances (y axis, range limited to < 0.05) for each platform and replicate

(x axis).e, UMAP embeddingasinb, coloured by author (left) or SCimilarity
(right) annotations. f, Percentage (colour bar) of author-annotated cells

(rows) matching annotations predicted by SCimilarity for each platformand
replicate (columns). g, Negative control benchmark of dataintegration. UMAP
embedding of B cell profiles (from Szabo et al.?®) and T, profiles (from Deng
etal.”), coloured by cell type after integration with each of five methods.
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Extended DataFig. 4 |See next page for caption.




Extended DataFig. 4 |Validation of celltype annotation on tissue sCcRNA-
seq.a, SCimilarity unconstrained cell type annotation. UMAP embedding

of single cell profiles (dots) from SCimilarity’s latent representation of atest
scRNA-Seqkidney data® (held out from training) (asin Fig. 3b,c), coloured by cell
annotations obtained without constraining to the scope of author-provided
annotationsin the study. b, Annotationis robust to the number of nearest
neighbours. Cell type classification score (y axis) at different number of nearest-
neighbours, k (x axis). c-h, Benchmarking of annotation by established methods.
c,e,g, UMAPembedding of cell profiles as in (a) coloured by annotations
predicted by CellTypist (c), TOSICA (e), or scANVI(g).d,f h, Percentage

(colour bar) and number of author-annotated cells (columns) matching
annotations predicted by CellTypist (d), TOSICA (f), and scANVI (h) (rows).

ij, Authorannotated cDCs express a mixture of DC markers and markers of
othercelltypes. Mean expression (dot colour) and percent of expressing cells
(dotsize) for canonical marker genes of monocytes (Mono), macrophages (Mac),
and conventional dendritic cells (cDCs) (i) or epithelial (Epi), endothelial (Endo),
orother non-myeloid lineages (Other) (j) inauthor-annotated cDCs (row1) and
the subset of those same cells predicted as different myeloid subsets (rows, i) or
asnon-myeloid cells (rows, j) by other annotation methods. Right bar plots and
counts: number of cells per annotation.
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Extended DataFig. 5| Validation of cell type annotation on CITE-seq of
PBMCs. a, Author annotations. UMAP embedding of single-cell profiles (dots)
from SCimilarity’s latent representation of PBMCs profiled by CITE-seq®.

b-i, SCimilarity’sannotationaccuracyis on par or better than three other
methods. Left: UMAP embedding (asin a) of cell profiles coloured by
annotations predicted by SCimilarity (b), CellTypist (d), TOSICA (f), or

scANVI (h). Right: Percentage (colour bar) and number of author-annotated
cells (columns) matching annotations predicted by SCimilarity (c), Cell Typist
(e), TOSICA (g), or scANVI (i) (rows).j, Surface marker protein levels of selected
cell populations. Distribution (y axis) and median level within population
(colour bar) of author-normalized protein levels for selected markers (rows)
across cell types (x axis) for author (left) and SCimilarity (left) annotated cells.
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Extended DataFig. 6|SCimilarity annotations and gene attributions capture

knownbiology. a, SCimilarity annotated cell type profiles group by correct
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Extended DataFig.7|See next page for caption.



Extended DataFig.7|Fibrosis-associated myofibroblasts correlate with
presence of fibrosis-associated macrophages across tissues and diseases.
a, Myofibroblasts are prevalentacross tissues and diseases. Number of cells
(circlesize) acrosstissues (outermost blue circles), disease states (middle green
circles), and individual studies (innermost circles, coloured by fraction of cells
annotated as fibroblasts or myofibroblasts with SCimilarity scores >95™
percentile of total fibrosis-associated myofibroblast query scores (log scaled
colour bar)). Circlessize for disease and study are scaled relative to other diseases
inthe same tissue or studiesin the same disease. b, Fibrosis-associated
macrophages and myofibroblasts are correlated across conditions. Fractions

of FM®-like cells (x axis; FM® query hits as afraction of total cells annotated as
monocytes or macrophages) and fibrosis-associated myofibroblasts (y axis;
fibrosis-associated myofibroblast query hits asafraction of total cellsannotated
as fibroblasts or myofibroblasts) in each invivo sample (dots, coloured by

condition) containing >50 monocytes/macrophages and >50 fibroblasts/
myofibroblasts with alinear fit (black line) and 95% confidence interval round
thefit(greyband). Inset box: Pearson correlation (r?) and nominal two-sided t
test p-value for the correlation. ¢,d, SCimilarity better retrieves amyofibroblast
query than LLM-based models. c, UMAP of cells from the ILD study GSE128033
with cells coloured by amyofibroblast signature score (ground truth) or
similarity to the myofibroblast query state for SCimilarity (right, first), scGPT
(right, second), or scFoundation (right, third). Top left: Spearman’s p between
signature score rankings and distances to the query cell.d, Distribution of
myofibroblast signature (first), SCimilarity (second), scGPT (third), and
scFoundation (fourth) scores asin (c) for n =28 SCimilarity predicted cell types
acrossn=58,530total cells (outliers removed). Boxplot: upper/lower quartiles
(box), min/max values (whiskers), and median (center line).


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128033
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Extended DataFig. 8 | FM®s among monocytes and macrophages.

a-c, Agreement between SCimilarity and traditional FM® cell scores. a, Scanpy
FM® gene signature score (x axis) and FM® SCimilarity score using a prototypical
FM® cellular profile defined from Adams etal.! (y axis) for each cell (density
shown as colour intensity). b,c, UMAP embedding of n=2,578,221 monocyte and
macrophage cell profiles (dots) from SCimilarity’s latent space representation
coloured by SCimilarity score using a prototypical FM® cellular profile defined
from Adams et al.! (b) or by Scanpy’s signature score for FM® associated genes (c).
d,FM®important genes are enriched for relevant pathways. False Discovery
Rate (-log,,(q value), hypergeometric test, x axis) for enrichment of Reactome
pathways (y axis, Q< 0.05and gene count >4) with the100 genes with the top

integrated gradients attribution scores for the FM® query (ranked by score).
Colour:ratio ofimportant genes within aReactome pathway to the total size of
the pathway. e-g, Expression of known and novel genes associated with FM®s.
Distribution of the fraction of cells (y axis) in ILD tissue samples (dots) among
n=500randomly sampled FM®-like (top 10,000 cells by SCimilarity score) cells
(orange, n=23tissue samples) and n =500 randomly sampled non-FM®-like
(remaining cells) macrophages and monocytes (blue, n =13 tissue sample) that
express (>0 UMI counts) the known FM® marker TREM2 (e) and two FM®s-
enriched genes not previously described for FM®s (f,g). Crossbar: upper/lower
quartiles (vertical line) and median (horizontal line).
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O 0O OX 00 00

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

LIX X
XL

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Public sc/snRNA-seq data from the Gene Expression Omnibus (GEQO) was collected using a combination of the Bio.Entrez module from
Biopython v1.81, GEOparse v2.0.3, and custom shell scripts; data sourced from other repositories was collected by manual download or
custom shell scripts.

Data analysis Data analysis in this study was performed using scanpy v1.9.2, souporcell v2.0, harmonypy v0.0.9, Scanorama v1.7.4, scVI and scArches
v1.1.0rc2, Hnswlib v0.8.0, CellTypist v1.6.2, TOSICA v1.0.0, scGPT v0.2.1 (June 23, 2023 model), scFoundation (December 9, 2023 model),
ReactomePA v1.40.0, and custom Python and R scripts. The SCimilarity code base is available from https://github.com/Genentech/scimilarity.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

In vitro data generated in this study have been deposited in the Gene Expression Omnibus (GEO) under accession GSE280632. Model weights, single-cell data
embeddings, curated metadata and k-NN graphs have been deposited on Zenodo with DOI 10.5281/zenodo.10685499 (https://zenodo.org/records/10685499).
Source repositories and accession numbers for the public sc/snRNA-seq studies used for model training, model testing, or as part of the unlabeled referenced set
are provided as supplementary tables.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This information was not collected or referenced.

Reporting on race, ethnicity, or  This information was not collected or referenced.
other socially relevant

groupings

Population characteristics No population characteristics were relevant for this study.

Recruitment There was no recruitment for this study.

Ethics oversight Peripheral blood samples from healthy volunteers were provided by the Samples for Science (S4S) donor program at

Genentech; donors provided written informed consent and sample collection was approved by the Western-Copernicus
Group Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size for the experiment performed as part of this study was determined based on experimental feasibility, mitigation of batch effects,
and replicate consistency in prior work. No sample size calculations were performed.

Data exclusions  No data was excluded from the experiment performed as part of this study. For data collection, public sc/snRNA-seq data source from GEO
was excluded if it did not match keywords denoting it was human samples from the 10x Chromium platform; data sets were further excluded
if they could not be read in using loaders for .mtx, .h5ad, .tsv or .csv formats.

Replication The experiment performed as part of this study was performed once with three biological replicates. No replicates were discarded.

Randomization  The experiment performed as part of this study had only a single experimental group, so randomization was not applicable.

Blinding The experiment performed as part of this study had only a single experimental group, so blinding was not applicable.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies IXI D ChlIP-seq
Eukaryotic cell lines IXI D Flow cytometry
Palaeontology and archaeology g D MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern
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Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-authentication-procedures for-each seed stock-used-ornovel-genotype generated. Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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