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SUMMARY
Computational predictionof thepeptidespresentedonmajor histocompatibility complex (MHC) class I proteins
is an important tool for studying T cell immunity. The data available to develop such predictors have expanded
with theuseofmassspectrometry to identify naturallypresentedMHC ligands. Inaddition toelucidatingbinding
motifs, the identified ligands also reflect the antigen processing steps that occur prior toMHCbinding.Here,we
developed an integratedpredictor ofMHCclass I presentation that combines newmodels forMHCclass I bind-
ing and antigen processing. Considering only peptides first predicted by the binding model to bind strongly to
MHC, the antigen processing model is trained to discriminate published mass spectrometry-identified MHC
class I ligands from unobserved peptides. The integrated model outperformed the two individual components
aswell as NetMHCpan 4.0 andMixMHCpred 2.0.2 on held-outmass spectrometry experiments. Our predictors
are implemented in the open source MHCflurry package, version 2.0 (github.com/openvax/mhcflurry).
INTRODUCTION

Cytotoxic (CD8+) T cells recognize peptides presented in com-

plex with major histocompatibility (MHC) class I molecules on

cell surfaces. These peptides are usually derived from the degra-

dation of endogenous proteins and comprise a snapshot of the

protein content of the cell, enabling T cells to distinguish healthy

cells from those with viral, bacterial, or tumor-associated

mutated proteins (Rossjohn et al., 2015; Schumacher and

Schreiber, 2015). The repertoire of MHC class I-presented pep-

tides is generated through a complex series of biochemical pro-

cesses, beginning with cleavage of a protein into peptides in the

proteasome, further cleavage (or destruction) by cytosolic pepti-

dases, peptide transport into the endoplasmic reticulum (ER)

through the transporter associated with antigen processing

(TAP) complex, trimming by ER-resident aminopeptidases

(ERAP), and stable association with one of the several MHC

class I proteins expressed by a cell (Rock et al., 2016). The

MHC class I genes (HLA-A, HLA-B, and HLA-C in humans) are

the sites of dramatic allelic variation at the population level,

with each of the thousands of known HLA alleles associated

with a strict, potentially distinct peptide-binding preference.

While a high-affinity interaction with MHC class I is the most se-

lective requirement for a peptide to be presented, the other pro-

cesses in the antigen presentation pathway likely exert important

secondary effects.
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Prediction of MHC class I-presented peptides is a critical tool

in vaccine design and studies of infectious disease, autoimmu-

nity, and cancer (Peters et al., 2020). Most predictive pipelines

in use today focus only on MHC class I binding affinity (BA)

prediction.While predictors fit to small datasets for individual an-

tigen processing (AP) steps have been proposed (Bhasin et al.,

2007; Keşmir et al., 2002; Nielsen et al., 2005; Peters et al.,

2003) and integrated with BA predictions to give a composite

score (Larsen et al., 2005; Stranzl et al., 2010; Tenzer et al.,

2005), improvements in accuracy from these approaches have

been modest at best (Koşalo�glu-Yalçın et al., 2018). The rela-

tively recent accumulation of large datasets of mass spectrom-

etry (MS)-identified MHC class I ligands provides an opportunity

to revisit AP prediction using larger and potentially more biolog-

ically relevant datasets. While the AP information in these

datasets likely already informs existing MHC class I binding pre-

dictors trained on MS datasets (Gfeller et al., 2018; Jurtz et al.,

2017), AP remains intertwined with MHC class I binding prefer-

ences in these predictors, making it difficult to interpret the indi-

vidual contributions and potentially leading to lower predictive

accuracy.

In this work, we develop separate predictors for MHC allele-

dependent effects (BA prediction) and allele-independent effects

(AP prediction). We first trained a new pan-allele MHC class I BA

predictor (referred to as MHCflurry 2.0 BA) on available MHC

class I ligand data, including affinity measurements and MS
ished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. MHCflurry 2.0 BA Predictor Architecture and Benchmark

(A) BA predictor training data, model input representations, and neural network architectures.

(B) AUC of MHCflurry 2.0 BA in comparison to other predictors across the MULTIALLELIC benchmark experiments. Each point corresponds to a single

experiment from the MULTIALLELIC (NetMHCpan 4.0 BA and EL) or MULTIALLELIC-RECENT (MixMHCpred 2.0.2) benchmarks.

(C) Mean improvement in AUC across experiments per peptide length. Error bars are bootstrap 95% confidence intervals of the mean.

(D) PPV of MHCflurry 2.0 BA in comparison to other predictors. Points correspond to the same experiments as in (B).
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datasets. The use of in vitro affinity measurements in the training

data, which are largely independent of AP, is one of several

design choices intended to limit the BA predictor’s tendency to

learn AP signals. We use the BA predictor to generate a training

set for a model of AP by combining MS-identified peptides (hits)

with unobserved peptides (decoys), where both hits and decoys

are predicted by the BA predictor to bind the relevant MHC class

I alleles. The AP predictor thus models the residual allele-inde-

pendent sequence properties that were not learned by the BA

predictor. In support of its biological relevance, the processing

predictor favored peptides consistent with established motifs

for key AP steps and showed quantitative agreement with an in-

dependent dataset of proteasome-cleaved peptides (Wolf-Levy

et al., 2018). We combined the BA and AP predictors in a logistic

regression model, which we refer to as the presentation score

(PS) (MHCflurry 2.0 PS). Using a benchmark of held-out MS da-

tasets, we found that the PS predictor outperformed both its

component models and the commonly used NetMHCpan 4.0

and MixMHCpred 2.0.2 predictors. The margin of improvement

was substantial, with at least a 40% increase in positive predic-

tive value (PPV) for all comparisons.

RESULTS

Wefirst tested the newMHCflurry 2.0 BA predictor (Figure 1A) on

affinity measurements and MS-identified MHC ligands held-out

from its training data. The predictor showed good performance

for most alleles, with 214 of 236 (91%) alleles having an area un-
der the curve (AUC) score of at least 0.90 (Figure S1; Table S1).

To compare against existing BA (NetMHCpan 4.0 BA) and MS

ligand (NetMHCpan 4.0 eluted ligand [EL] and MixMHCpred

2.0.2) predictors, we compiled a benchmark using published

datasets of MS-identified MHC ligands (Tables S2 and S3;

Data S1). As the peptides identified in these experiments may

have bound any of the up to six classical MHC class I alleles ex-

pressed in an individual, we refer to this as the MULTIALLELIC

benchmark. MHCflurry BA performed best in terms of AUC at

differentiating MS hits from decoy peptides sampled from the

same proteins, outperforming NetMHCpan BA on 75 of 76 sam-

ples, NetMHCpan EL on 56 of 76, and MixMHCpred on 18 of 20

samples in the MULTIALLELIC-RECENT subset (Figure 1B). The

increase in AUC relative to NetMHCpan BAwas 5.8% (bootstrap

95% confidence interval 4.8–6.8), 1.8% (1.3–2.4) relative to

NetMHCpan EL, and 2.6% (1.8–3.4) relative to MixMHCpred,

with the greatest improvements observed for non-9-mer pep-

tides (Figure 1C).

We expanded our evaluation to include a set of 100 MS exper-

iments that used cell lines genetically engineered to express a

single MHC class I allele (Abelin et al., 2019; Sarkizova et al.,

2020), which we refer to as the MONOALLELIC benchmark (Ta-

ble S2; Data S2). As this dataset is normally incorporated into the

training set for the MHCflurry BA predictor (Table S4), we tested

a variant of MHCflurry BA trained without this data. We again

found that MHCflurry BA outperformed the other tools in terms

of AUC (Figure S2A). Notably, good accuracy (AUC > 0.94) and

a small improvement over existing tools was observed for the
Cell Systems 11, 42–48, July 22, 2020 43
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11 alleles that had no representation in the training data

(Figure S2B; Table S5). Performance on these alleles slightly ex-

ceeded the accuracy obtained by substituting predictions for

similar well-characterized alleles, with a mean improvement of

0.42% (0.14–0.72) in AUC (Figure S2C). These observations

suggest that MHCflurry BA has some capacity to generalize to

alleles that are not experimentally characterized.

We next returned to the MULTIALLELIC benchmark and eval-

uated the predictors in terms of PPV, which emphasizes differ-

ences at the high end of a predictor’s output. In contrast to the

AUC evaluation, MHCflurry BA showed only a PPV advantage

in comparison to NetMHCpan BA, with a mean improvement in

PPV of 48% (37–62). Differences were within error in comparison

to the MS ligand predictors, with a mean 1.9% (�3.4– +7.6)

improvement over NetMHCpan EL and a trend toward underper-

forming MixMHCpred, with a mean difference of �4.0%

(�12.6–+5.6; Figure 1D). Similar results were observed for PPV

on the MONOALLELIC benchmark (Figure S2D).

We hypothesized that explicitly modeling processes that do

not depend on MHC class I allele might enable accuracy im-

provements over MHCflurry BA alone. We therefore developed

an MHC class I allele-independent model trained to distinguish

hits fromdecoyswhere both the hits and decoy peptides are pre-

dicted to be tight binders (rank less than 2%) by the MHCflurry

BA predictor. We refer to this model as the MHCflurry 2.0 AP

predictor. Its neural network architecture is motivated by the

possibility of learning peptide N- andC-terminal cleavage or pro-

cessing signals (Figure 2A). We trained two versions of the AP

predictor on the MONOALLELIC benchmark dataset. One pre-

dictor includes the peptide plus the five immediately upstream

and downstream residues from its source protein (AP with

flanks); the second predictor includes only the peptide (AP

without flanks).

To understand if the MHCflurry AP predictors learned a mean-

ingful signal, we evaluated their accuracy on the MULTIALLELIC

benchmark (Figure 2B). While the AP variants underperformed

the standard MHC binding predictors and MHCflurry BA, they

performed better than might be expected given that they do

not take MHC allele as an input. The AP without flanks and AP

with flanks predictors had mean AUCs of 0.85 (bootstrap 95%

CI 0.84–0.87) and 0.86 (0.84–0.87), respectively, compared

with 0.91 (0.90–0.92) for the MHCflurry BA predictor (Figure 2B).

This suggested that the MHCflurry AP predictors had learned a

meaningful MHC class I allele-independent signal from the

MONOALLELIC MS training set.

To understand what the MHCflurry AP predictors may be

learning, we ranked all 9-mer peptides in the MULTIALLELIC

benchmark by AP prediction, calculated position weight

matrices for the top 1% highest predictions, and plotted a

sequence logo (Figure 2C; Table S6). This analysis showed the

AP predictor learned that hits are depleted for cysteines across

the peptide, a known bias of MS (Abelin et al., 2017). It also

showed depletion of prolines from the first position in the peptide

(P1) extending upstream into the N-flank as well as strong but

complex specificity at the C terminus of the peptide and some

preferences at the downstream flanking residue. These signals

suggested qualitative agreement with established signatures

for TAP transport, proteasomal cleavage, and ERAP trimming

(see Discussion).
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As cysteine depletion is one of the strongest knownMS biases,

wewere concerned that much of the accuracy of the AP predictor

may be due to its modeling of this bias. We therefore repeated the

AUC analysis on the MULTIALLELIC benchmark after removing

peptides (hits and decoys) that contained cysteine. This analysis

showed very similar AUC values as the earlier analysis, with a

change in AUC of less than 3% for all samples (Figure 2D).

Thus, while the AP predictor learns the cysteine MS bias, this ef-

fect alone is not the primary driver of its performance.

To evaluate the extent to which the AP predictors learned a

signal that is also learned by the MHCflurry BA predictor, we

measured the correlation between AP and BA predictions for

random peptides across the HLA-A, HLA-B, and HLA-C alleles

in the BA training set (n = 183). The correlations were positive, sig-

nificant but modest in magnitude (Pearson r < 0.5) for all alleles

tested. For example, AP and BA predictions for the HLA-A*02:01

allele showed a Pearson correlation of 0.23. While peptides pre-

dicted to bind HLA-A*02:01 tightly tended to have higher AP

scores, it was possible to find peptides with high scores for one

predictor but not the other (Figure 2E). Correlations with the AP

predictor were somewhat higher for HLA-B and HLA-C than for

HLA-A alleles (Figure 2F). The alleles used to train the APpredictor

showed no greater AP versus BA correlations on average than

those that were not included in the AP training set; in fact the cor-

relationwasslightly lower for theallelesused in training (Figure2G).

Overall, this analysis suggested that the AP predictor is at least

partially non-redundant with the MHCflurry BA predictor.

To quantitatively assess if the AP predictor captures biologi-

cally relevant effects, we tested it on an independent dataset

of proteasome-cleaved peptides. We applied the AP predictor

to 1,079 peptides identified by Wolf-Levy et al. using the

‘‘mass spectrometry analysis of proteolytic peptides’’ (MAPP)

assay, in which cleaved peptides are reversibly cross linked to

cellular proteasomes and identified by MS (Wolf-Levy et al.,

2018). AP predictor scores were significantly higher for MAPP-

identified peptides (hits) than unobserved (decoy) peptides

drawn from the same genes (Mann-Whitney p < 0.01 for each

peptide length 8–11; Figure 2H; Table S7). This indicated that

the AP predictor learned a signal consistent with a key AP step.

We next asked if the AP predictor may be combined with the

MHCflurry BA predictor to achieve higher performance than either

alone. We trained a logistic regression model that takes two in-

puts: the strongest MHCflurry BA prediction across alleles for

the sample (transformed to fall in the range 0.0 –1.0, with higher

indicating a stronger binder), and the AP prediction (Figure 3A).

We refer to this logistic regressionmodel as theMHCflurry PSpre-

dictor. We trained MHCflurry PS predictors using either the AP

with flanking (PS with flanking) or AP without flanking (PS without

flanking) predictors on theMULTIALLELIC-OLD dataset and eval-

uated performance on the MULTIALLELIC-RECENT benchmark.

Both PS models showed significantly improved accuracy, in

terms of both AUC and PPV, over all other predictors tested (Fig-

ures 3B and 3C). In terms of PPV, the PS without flanks predictor

showed a 120% (65–184) improvement over NetMHCpan 4.0

BA, 56% (22–95) improvement over NetMHCpan 4.0 EL, 41%

(22–64) improvement over MixMHCpred 2.0.2, and 51%

(29–78) improvement over MHCflurry 2.0 BA. The use of flanking

sequences made a small but consistent difference, further

improving PPV by a mean 2.1% (0.14–3.9).



Figure 2. The MHCflurry 2.0 AP Predictor Models MHC Class I Allele-Independent Effects

(A) AP predictor training scheme and neural network architecture.

(B) Mean AUC and PPV accuracy on the multiallelic MS benchmarks for the AP predictor in comparison to other predictors. The MixMHCpred 2.0.2 tool was

benchmarked on the MULTIALLELIC-RECENT subset; the other predictors were tested on the full MULTIALLELIC benchmark.

(C) Sequence logo for the motif learned by the AP predictor. Positive values (above the center line) indicate enrichments above proteome level; negative values

indicate depletions.

(D) Comparison of AP predictor AUC scores on theMULTIALLELIC benchmark samples when peptides containing cysteine were removed (y axis) versus retained

(x axis). The inset shows the percentage change in AUC when cysteine-containing peptides are removed.

(E) Correlation of the AP predictor with the BA prediction for HLA-A*02:01. Each red dot corresponds to a 9-mer peptide sampled from the proteome. The black

line indicates the best-fit regression line, and example peptides are indicated.

(F and G) Correlation of AP predictor with the BA prediction across HLA alleles by gene (F) or by allele representation in the AP training set (G).

(H)Mean AP score for proteasome-associated peptides observed byWolf-Levy et al. (Wolf-Levy et al., 2018) (hits) and unobserved peptides from the same genes

(decoys).
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DISCUSSION

Our MHC class I ligand prediction method consists of two neural

network models: the MHCflurry BA predictor and the MHC class
I allele-independent MHCflurry AP predictor. The AP predictor is

trained to learn what the BA predictor missed, i.e., residual

sequence properties that distinguish MS hits from decoys

among peptides predicted to bind MHC class I tightly. Both
Cell Systems 11, 42–48, July 22, 2020 45



Figure 3. The MHCflurry 2.0 PS Model Com-

bines BA and AP Prediction

(A) The PS model is a two-input logistic regression

model that integrates BA and AP predictions to give

a composite score. It is trained on multiallelic MS

hits and decoys.

(B) Comparison of PPV scores of the PSmodels with

other predictors. The top row shows the perfor-

mance of the PS model variant that uses the AP

without flanks predictor, which considers only the

peptide and not the upstream and downstream

flanking sequences. The bottom row corresponds to

the variant that also considers the flanking se-

quences.

(C) Mean percent change in AUC and PPV for the

indicated predictors (y axis) relative to each of the

three existing predictors (columns). Error bars indi-

cate 95% confidence intervals for the mean change.

ll
OPEN ACCESS Methods
predictors are trained on monoallelic MS datasets (plus affinity

measurements for the BA predictor), and their results combined

using a logistic regression model fit to multiallelic MS datasets.

When evaluated on held-out multiallelic MS experiments, the

combined predictor, referred to as MHCflurry PS, outperformed

the individual components and standard tools. Although inclu-

sion of flanking sequences, i.e., the adjacent residues in the pep-

tide’s source protein, provided a small additional accuracy

boost, the overall improvement over standard tools was also

evident when only the peptide was provided to the AP predictor.

In comparison to NetMHCpan 4.0, the MHCflurry BA predictor

uses larger neural networks with two or three hidden layers and

over one million trained parameters. It also benefits from addi-

tional training data that have been published since the release of

NetMHCpan. In preliminary experiments, we found that the

deeper networks could consistently outperform a shallow (one

hidden layer) version of MHCflurry BA, but that differences were

modest in comparison to the improvement from incorporating

additional training data, especially when such data expanded

the number of represented alleles. We therefore expect that

most of the improvement in accuracy of MHCflurry 2.0 BA is
46 Cell Systems 11, 42–48, July 22, 2020
due to incorporation of recently published

datasets, such as that of Sarkizova et al.

(Sarkizova et al., 2020), rather than the

deeper neutral network architecture.

Our work builds on the approach by Abe-

lin et al., who developed a proteasomal

cleavage predictor fit to MS-identified

MHC class I ligands and observed an in-

crease in accuracy when it was included

alongwith other features in a logistic regres-

sion model (Abelin et al., 2017). Their work

used a different method to control for

MHC class I binding signals in the cleavage

predictor training set: decoys were selected

to match the first two and last two positions

of the hit peptide, which encompass the an-

chor positions for most alleles. This is ex-

pected to disrupt the cleavagemodel’s abil-

ity to learn features at these positions,which
are also the positions where we observed the strongest

preferences.

The AP predictor sequence motif (Figure 2C) shows similarities

with the established preferences of key AP steps. Deconvolution

of effects, however, is complicated by the overlapping specificity

of these steps, potentially a consequence of coevolution of the AP

machinery (Nielsenetal.,2005). Inparticular, theAPpredictor’spref-

erences at the C terminus of the peptide may reflect TAP binding

and/or proteasomal cleavage.Work by Tampé and colleagues (Ue-

bel et al., 1997) found that TAP favors peptides with a C-terminal

Phe, Tyr, Arg, or Leu and disfavors Asp, Glu, Asn, and Ser, all reca-

pitulatedby theAPpredictor.TheAPmotif isalsoconsistentwith the

effects of the chymotryptic-like activity of theproteasome (cleavage

after Phe, Tyr, Leu, Trp but not Gly) as well as tryptic-like (cleavage

afterArgandLys),butnotcaspase-likespecificity(Harrisetal., 2001;

Nussbaum et al., 1998). Some agreement with proteasomal pro-

cessing is also apparent at the interior residues of the peptide,

such as a depletion of proline at P8 and a slight enrichment for pro-

line at P6 (referred to as P2 and P4, respectively, in cleavage

studies). At the first flanking residue downstream of the peptide,

which is free from the effects of TAP and MHC binding, the
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enrichments for Arg, Lys, Ala, Ser, and Gly are consistent with pro-

teasomal cleavage preferences for the position after the cut site

(Nussbaumet al., 1998;Wolf-Levy et al., 2018), although the enrich-

ment forArgandLyscouldalso indicate tryptic-likespecificitywork-

ing from the C terminus of the protein (Abelin et al., 2017). The strik-

ing depletion of prolines in the N-flanking residues up to and

including the first position of the peptide (P1) and the enrichment

for proline at P2 is consistent with trimming by ERAP (Serwold

et al., 2002), although again we cannot exclude a contribution

from proteasomal cleavage. These observations and the higher

AP scores for proteasome-cleaved peptides identified by MAPP

(Figure 2H) suggest that the AP predictor has learned certain AP

signals, although a detailed deconvolution of effects remains future

work.

An important limitation of this work is that we apply datasets of

MHC class I ligands detected by MS both to train and to bench-

mark our predictors. Assay biases, which we expect are modeled

by the AP predictor, have the potential to erroneously inflate our

accuracy scores. Although the main known bias, depletion of

cysteine, doesnot seem tohaveadramatic effect onAPpredictive

accuracy, we cannot rule out the contributions of other kinds of

bias. Our work also only addresses the steps contributing to

MHCclass I ligandpresentation,notTcell recognitionofpresented

epitopes. Future work will need to assess whether the predictors

described here enable improved prediction of T cell epitopes.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

MULTIALLELIC benchmark dataset with

predictions (CSV)

This paper; and Mendeley Data Data S1; 10.17632/zx3kjzc3yx.3

MONOALLELIC benchmark dataset with

predictions (CSV).

This paper; and Mendeley Data Data S2; 10.17632/zx3kjzc3yx.3

Training data for MHCflurry 2.0 binding

affinity (BA) predictor (CSV).

This paper; and Mendeley Data Data S3; 10.17632/zx3kjzc3yx.3

Training data for the variant ofMHCflurry BA

evaluated on the MONOALLELIC

benchmark in Figure S2 (CSV).

This paper; and Mendeley Data Data S4; 10.17632/zx3kjzc3yx.3

Training data for MHCflurry 2.0 antigen

processing (AP) predictors (CSV).

This paper; and Mendeley Data Data S5; 10.17632/zx3kjzc3yx.3

Training data forMHCflurry 2.0 presentation

score (PS) predictors (CSV).

This paper; and Mendeley Data Data S6; 10.17632/zx3kjzc3yx.3

IEDB MHC ligand data (Vita et al., 2019) http://www.iedb.org/doc/

mhc_ligand_full.zip

BD2013 affinity dataset (Kim et al., 2014); http://tools.iedb.org/

main/datasets/

http://tools.iedb.org/static/main/

benchmark_mhci_reliability.tar.gz

SysteMHC Atlas (Shao et al., 2018) https://systemhcatlas.org/

Builds_for_download/

180409_master_final.tgz

RNA-seq: Human Protein Atlas (Cell Lines) (Uhlén et al., 2015) https://www.proteinatlas.org/download/

rna_celline.tsv.zip

RNA-seq: Human Protein Atlas (Blood) (Uhlén et al., 2015) https://www.proteinatlas.org/download/

rna_blood_cell_sample_tpm_m.tsv.zip

RNA-seq: Human Protein Atlas (GTEx) (Uhlén et al., 2015) https://www.proteinatlas.org/download/

rna_tissue_gtex.tsv.zip

RNA-seq: Expression Atlas (CCLE) (Barretina et al., 2012; Papatheodorou

et al., 2020)

https://www.ebi.ac.uk/gxa/experiments-

content/E-MTAB-2770/resources/

ExperimentDownloadSupplier.

RnaSeqBaseline/tpms.tsv

RNA-seq: Melanoma Tumors (Barry et al., 2018) GEO: GSE113126; https://www.ncbi.nlm.

nih.gov/geo/download/?

acc=GSE113126&format=file

HLA-A protein sequences IMGT (Robinson et al., 2015) ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/

hla/fasta/A_prot.fasta

HLA-B protein sequences IMGT (Robinson et al., 2015) ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/

hla/fasta/B_prot.fasta

HLA-C protein sequences IMGT (Robinson et al., 2015) ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/

hla/fasta/C_prot.fasta

HLA-E protein sequences IMGT (Robinson et al., 2015) ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/

hla/fasta/E_prot.fasta

HLA-F protein sequences IMGT (Robinson et al., 2015) ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/

hla/fasta/F_prot.fasta

HLA-G protein sequences IMGT (Robinson et al., 2015) ftp://ftp.ebi.ac.uk/pub/databases/ipd/imgt/

hla/fasta/G_prot.fasta

H-2 Db protein sequence UniProt P01899

H-2 Dd protein sequence UniProt P01900

H-2 Dp protein sequence UniProt P14427

(Continued on next page)
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H-2 Dk protein sequence UniProt P14426

H-2 Dq protein sequence UniProt Q31145

H-2 Kb protein sequence UniProt P01901

H-2 Kd protein sequence UniProt P01902

H-2 Kk protein sequence UniProt P04223

H-2 Kq protein sequence UniProt P14428

H-2 Ld protein sequence UniProt P01897

H-2 Lq protein sequence UniProt Q31151

Other species MHC protein sequences IMGT (Robinson et al., 2015) ftp://ftp.ebi.ac.uk/pub/databases/ipd/mhc/

MHC_prot.fasta

Software and Algorithms

MHCflurry 2.0 This paper https://github.com/openvax/mhcflurry

NetMHCpan 4.0 (Jurtz et al., 2017) http://www.cbs.dtu.dk/services/

NetMHCpan-4.0

MixMHCpred 2.0.2 (Gfeller et al., 2018) https://github.com/GfellerLab/

MixMHCpred

Other

MS-identified MHC ligands (Hassan et al., 2013) Table S1

MS-identified MHC ligands (Mommen et al., 2014) Dataset S01

MS-identified MHC ligands (Bassani-Sternberg et al., 2015) Table S1

MS-identified MHC ligands (Ritz et al., 2016) Supplemental Information

MS-identified MHC ligands (Shraibman et al., 2016) Table S1

MS-identified MHC ligands (Gloger et al., 2016) Tables S1, S2, S3, S4, and S5

MS-identified MHC ligands (Bassani-Sternberg et al., 2016) Data S2

MS-identified MHC ligands (Bassani-Sternberg et al., 2016) S1 Dataset

MS-identified MHC ligands (Pearson et al., 2016) Used as reprocessed by (Bassani-

Sternberg et al., 2017): S2 Dataset

MS-identified MHC ligands (Shraibman et al., 2019) Tables S1 and S2

MS-identified MHC ligands (Abelin et al., 2019) Data S1

MS-identified MHC ligands (Sarkizova et al., 2020) Data S1 and S2

Proteosome-cleaved peptides identified by

‘‘mass spectrometry analysis of proteolytic

peptides’’ (MAPP)

(Wolf-Levy et al., 2018) Data S2
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Timothy

O’Donnell (tim@openvax.org).

Materials Availability
This study did not generate new materials.

Data and Code Availability
MHCflurry source code, training data, and trained models are available at https://github.com/openvax/mhcflurry. Datasets used to

train and benchmark the predictors described in this work have been deposited in Mendeley Data under DOI:10.17632/zx3kjzc3yx.3,

available at https://data.mendeley.com/datasets/zx3kjzc3yx.
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MS Benchmark Construction and Approach
Dataset Curation

To benchmark the binding predictors developed here and elsewhere, we collected datasets from11 studies that identifiedMHCclass

I-bound peptides using MS. We included only samples with known four-digit MHC class I genotypes. Two of the studies included

experiments that used cell lines engineered to express a single MHC class I allele. We refer to these as the MONOALLELIC samples,

which comprise 92 samples from the recent publication by Sarkizova et al(Sarkizova et al., 2020) and 8 samples from Abelin

et al(Abelin et al., 2019). We refer to the other samples, in which exact MHC class I restrictions were not experimentally determined,

as the MULTIALLELIC samples. We divided these into two groups: MUTLIALLELIC-OLD, comprised of 56 experiments from eight

studies published through 2018(Bassani-Sternberg et al., 2015, 2016, 2017; Gloger et al., 2016; Hassan et al., 2013; Mommen

et al., 2014; Ritz et al., 2016; Shraibman et al., 2016), and MULTIALLELIC-RECENT, comprised of 20 experiments from two studies

published in 2019(Sarkizova et al., 2020; Shraibman et al., 2019). Curated samples are listed in Table S2, the sample groups used for

each benchmark experiment are given in Table S3, and Data S1 and S2 give the full datasets for the MULTIALLELIC and MONOAL-

LELIC benchmarks, respectively.

Transcript Expression

Each curated mass spec experiment was associated with a publicly-available bulk RNA-seq expression dataset (or mixture of

several) that approximately matched its cell type or tissue of origin. This was used during decoy selection to disambiguate MS-iden-

tified peptides found in multiple proteins by associating each peptide with its most highly-expressed possible source protein. We

used three sources of expression data: (1) the Human Protein Atlas (Uhlén et al., 2015) analysis of tissues from the GTEx project,

cell lines, and whole blood, (2) the Expression Atlas (Papatheodorou et al., 2020) reanalysis of RNA-seq from the Cancer Cell Line

Encyclopedia (CCLE) (Barretina et al., 2012), and (3) published RNA-seq of 11 metastatic melanoma samples from patient tumors

(Barry et al., 2018). Data files giving Ensembl gene-level transcripts per million (TPM) expression quantifications were obtained

from their respective sources. Table S2 indicates the expression dataset used for each sample.

Decoy Selection

We generated accuracy benchmarks from the curated datasets by sampling unobserved peptides (decoys) from the same proteins

as the observed peptides (hits) for each sample. EachMS-identified peptide was searched in the Uniprot human reference proteome

(UP000005640_9606). In the case of multiple matches, we used the RNA-seq for each sample to select a single protein with the high-

est mRNA expression. For each sample, we randomly selected 99n decoy peptides, where n is the number of hits. Equal numbers of

decoy peptides of each length (8, 9, 10, 11) were sampled. We excluded from this procedure all peptides (hits and decoys) that were

present in the training data for any of a sample’s alleles for the MHCflurry predictor under evaluation, as well as hits that contained

noncanonical amino acids or could not be matched to a Uniprot protein and Ensembl gene (Ensembl release 98). Decoy generation

for benchmarks was separate from decoy generation used for predictor training.

Comparison to Existing Tools

We included two existing tools in our benchmarks, NetMHCpan 4.0 (Jurtz et al., 2017) and MixMHCpred 2.0.2 (Bassani-Sternberg

et al., 2017; Gfeller et al., 2018). The NetMHCpan 4.0 tool is an ensemble of neural networks trained on peptide-MHC class I affinity

measurements plus peptides from monoallelic MS experiments. It gives separate predictions for each kind of data, i.e. a BA predic-

tion and an EL prediction, which we evaluated as separate predictors in our benchmarks. MixMHCpred is trained on peptides iden-

tified in multiallelic MS experiments, which it deconvolves into clusters that are subsequently associated with MHC class I alleles. As

both the MHCflurry binding affinity predictor and NetMHCpan 4.0 do not incorporate multiallelic MS in their training sets, we evalu-

ated them on the full MULTIALLELIC benchmark. As MixMHCpred is trained on multiallelic MS, we tested it only on samples pub-

lished recently (after it was trained), i.e. the MULTIALLELIC-RECENT benchmark. The two studies in the MONOALLELIC dataset

were published after NetMHCpan 4.0 and MixMHCpred 2.0.2 were released, so it is also an appropriate test set for them, although

in some cases (21 of 100 samples in the MONOALLELIC benchmark) the sample’s allele was unsupported by MixMHCpred and we

omitted it when evaluating MixMHCpred. As the released MHCflurry 2.0 binding predictor incorporates the MONOALLELIC dataset

as training data, in evaluations of this benchmark we used a variant of MHCflurry re-trained without these datasets. Since the logistic

regression model used in the MHCflurry 2.0 PS predictor was fit to the MULTIALLELIC-OLD subset, we benchmarked it only on the

MULTIALLELIC-RECENT samples. The benchmarks used for each analysis are summarized in Table S3.

MHC Class I Binding Affinity Predictor
TheMHCflurry 2.0 BA predictor is a new pan-allele MHC class I binding affinity predictor that supports variable-length peptides up to

15-mers. It extends an earlier version of MHCflurry(O’Donnell et al., 2018) —in which separate neural networks were trained for each

of 112 supported alleles— to now support 14,993MHC class I alleles using a single neural network ensemble. The input to each neu-

ral network consists of (1) an encoding of the peptide amino acid sequence and (2) an encoding of the amino acids at 37 selected

positions from a multiple sequence alignment of a large number of MHC class I alleles across species. The neural networks each

output a nanomolar binding affinity (transformed to a 0-1 scale using the formula 1� log50000ðnM affinityÞ). The mean of the trans-

formed predictions over the ensemble gives the overall prediction. The predictor is trained on affinity measurements andMSdatasets

from cell lines monoallelic for a single MHC class I allele. MS hits are assigned a ‘‘<100 nM’’ binding affinity. The models are trained

using a variant of the mean squared loss (MSE) that supports such inequalities, as described previously(O’Donnell et al., 2018).
Cell Systems 11, 42–48.e1–e7, July 22, 2020 e3
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Peptide Representation

Peptides of 15 amino acids or shorter are supported. As our feedforward networks require fixed-length inputs, variable-length pep-

tides are transformed to a 45-mer representation by concatenating three representations: left aligned, centered, and right aligned.

Unused positions are represented using a special X symbol, treated as a 21st amino acid. For example, the peptide ‘‘GILGFVFTL’’

is represented by concatenating ‘‘GILGFVFTLXXXXXX’’ (left aligned), ‘‘XXXGILGFVFTLXXX’’ (centered), and ‘‘XXXXXXGILGFVFTL’’

(right aligned), resulting in ‘‘GILGFVFTLXXXXXXXXXGILGFVFTLXXXXXXXXXGILGFVFTL’’. Thus, each residue in the peptide is rep-

resented at three positions in the encoding. Themotivation for this approach is to ensure that the termini of the peptide along with the

central residues are available to the network at a fixed position in the encoding, regardless of peptide length. For example, the N-ter-

minal residue will always map to encoded position 1 (as well as to two other encoded positions, which do depend on peptide length),

the central residue is available at position 23, and the C-terminal residue is available at position 45. Each amino acid in this sequence

is transformed to a 21-dimensional vector using the BLOSUM62 substitution matrix(Henikoff and Henikoff, 1992), extended to

include the X placeholder, which is assigned similarity 1 to itself and 0 to all amino acids.

Allele Representation

MHC class I alleles are represented to the neural network by the amino acids at 37 positions from a global multiple sequence align-

ment. This representation is referred to as a ‘‘pseudosequence’’ by the NetMHCpan authors. We use the 34 peptide-contacting

positions included in the NetMHCpan 4.0 pseudosequence (re-derived using a new alignment), plus 3 additional positions. The addi-

tional positions were selected to differentiate several pairs of alleles (A*23:01/A*24:13, A*29:01/A*29:02, B*44:02/B*44:27, C*03:03/

C*03:04) that shared identical 34-mer NetMHCpan pseudosequences and had at least 50 entries in the training dataset. An earlier

version of the training dataset (MHCflurry version 1.4) was used for this step. The three additional positions were selected as the

most parsimonious set for distinguishing these alleles, not by consideration of protein structure or by comparison of predictive ac-

curacy. Using HLA-A*01:01 protein residue numbering (IMGT accession HLA00001) starting from 1, the full set of selected positions

were 31, 33, 48, 69, 83, 86, 87, 90, 91, 93, 94, 97, 98, 100, 101, 104, 105, 108, 115, 119, 121, 123, 126, 138, 140, 142, 167, 171, 174,

176, 180, 182, 183, 187, 191, 195, 223 (the three additional selected positions are shown in bold). Similar to the peptide encoding,

each amino acid was transformed to a 21-dimensional vector using the BLOSUM62 substitution matrix, where a placeholder X char-

acter represents global alignment positions with no residue (i.e. a deletion) for a particular MHC allele.

Allele Multiple Sequence Alignment

Full-length HLA-A, -B, -C, -E, -F, and -G amino acid sequences were downloaded from the IMGT/HLA(Robinson et al., 2015) project

database, mouseH-2 sequences fromUniProt (UniProt Consortium, 2019) (H-2Db from accession P01899; H-2 Dd, P01900; H-2 Dp,

P14427; H-2 Dk, P14426; H-2 Dq, Q31145; H-2 Kb, P01901; H-2 Kd, P01902; H-2 Kk, P04223; H-2 Kq, P14428; H-2 Ld, P01897; H-2

Lq, Q31151), and MHC class I sequences for additional species from the IPD-MHC database(Maccari et al., 2017). After filtering to

MHC class I alleles with names parsable by the mhcnames package (https://github.com/openvax/mhcnames), the sequences were

aligned using Clustal Omega 1.2.1 (ref. (Sievers et al., 2011)) with the command ‘‘clustalo -i class1.fasta -o class1.aligned.fasta.’’

Positions from the resulting alignment were selected that best recapitulated the NetMHCpan pseudosequences(Jurtz et al.,

2017), then extended to fully differentiate the 171 alleles with at least 50 entries in the training dataset. The final sequences included

with MHCflurry encompass 14,993 MHC class I alleles.

Training Data

MHC ligand entrieswere downloaded from the Immune EpitopeDatabase (IEDB)(Vita et al., 2019) on April 27, 2020. Entries with pars-

able MHC class I allele names and peptides of length 8-15 with no post-translational modifications were retained. The MS data from

IEDB was extended to include 46,880 additional MS hits from the SysteMHC Atlas project(Shao et al., 2018) (downloaded on May 6,

2019) plus hits from the MONOALLELIC benchmark: 136,742 hits from Sarakizova et al(Sarkizova et al., 2020) and 4,808 hits from

Abelin et al (Abelin et al., 2019). The training set for the BA predictor is available as Data S3. For testing on theMONOALLELIC bench-

mark, a predictor variant trainedwithout theMONOALLELIC datasets was used (Data S4). The set of IEDB affinity measurements was

augmented with the ‘‘BD2013’’ dataset from Kim et al.(Kim et al., 2014). The final training set consisted of 493,473 MS entries and

219,596 affinity measurements. A summary of the training datasets used for all predictors introduced in this work is given in Table S4.

Considerations Related to Use of MS Training Data

In preliminary experiments, we found that the inclusion of MS data in the BA predictor training set was critical for learning a high-per-

formance predictor. This is not surprising as without MS data the training set size and allele coverage is greatly diminished. Inclusion

of MS data represents a tradeoff, however, as the approach we describe to train the AP predictor requires that the BA predictor does

not fully model the antigen processing signals available in its MS training datasets. While the BA predictor likely includes a contribu-

tion from antigen processing, we note that several technical choices may have blunted its ability to learn these effects. The BA pre-

dictor’s training set includes 69%mass spec-identified ligands and 31% peptide-MHC class I affinity measurements. The predictor

therefore models a compromise between antigen processing-sensitive (MS ligand) and -insensitive (affinity measurement) training

data. The influence of MS data is expected to be further diluted at the extreme strong-binder segment of the BA predictor’s output

because MS hits are assigned an IC50 of ‘‘< 100 nM’’ in the training set, i.e. any assigned affinity tighter than 100 nM results in zero

contribution to the training loss. This means that MS training data does not guide the relative ranking (exact IC50) of strong binders,

potentially the regime where antigen processing signals may make the greatest difference. This effect likely also plays a role in the

relatively lackluster performance of the BA predictor when assessed by the PPV metric – which emphasizes the rank-order of pep-

tides at the extreme high-end of the predictor’s output – despite good performance on AUC. Finally, an important difference between

the BA and AP predictors is that the AP predictor uses peptides from the proteome as decoys (unobserved non-binders), whereas the
e4 Cell Systems 11, 42–48.e1–e7, July 22, 2020

https://github.com/openvax/mhcnames


ll
OPEN ACCESSMethods
BApredictor uses random sequences sampled according to the same amino acid distribution as the hits. The AP predictor strategy is

expected to be more realistic and informative, at the cost of giving the AP predictor more opportunity to learn MS biases.

Neural Network Architectures

Each neural network in the ensemble corresponds to one of 35 possible model architecture variants. The overall design in all cases is

similar: the allele and peptide representations are concatenated, flattened, and passed through a series of two or three dense layers,

whose size ranges from 256 to 1024. Each dense layer is followed by a Dropout layer(Srivastava et al., 2014) with the dropout rate set

to 50%. Architectures vary in terms of the size and number of the dense layers, the amount of regularization applied to dense layer

weights (L1 penalty), and whether skip connections are used to give each dense layer direct access to the two preceding layers.

Model Training

The training data was sampled four times to generate four training subsets. Each subset excluded one quarter or 100 of the training

points for eachMHC class I allele, whichever was less for each allele. Models corresponding to the 35 architectures were fit to each of

the four training subsets, for 140 trained models in total. Initial weights were selected using layer-sequential unit-variance initializa-

tion(Mishkin and Matas, 2015). This was followed by a pre-training step, in which the network was fit to synthetic measurements

generated by a previous version of MHCflurry (version 1.2.0, using allele-specific models trained without MS datasets). The synthetic

data consists of affinity predictions for random peptides across 99 alleles. While pre-training on synthetic data, the training data was

used as a test set for early stopping, i.e. pre-training was halted once the mean square error (MSE) was no longer improving on the

actual (non-synthetic) training data. Typically, several hundred million synthetic measurements were used. Model fitting then pro-

ceeded using the training data, keeping 10% held-out for early stopping. The training dataset was augmented to include random

peptides set to have a very weak affinity (>30,000 nM). The lengths of the random peptides were selected to equalize the number

of non-binder data points across peptide lengths for each allele. As in NetMHC, the sequences of the random negative peptides

were resampled after each epoch.

Model Selection

From the 140 trained models, the model selection procedure selected ten to use in the final predictor ensemble. This was done by

selecting a set of models from each of the four training subsets independently, using MSE on the held-out points as the accuracy

metric. A forward stepwise procedure was used, in which models are added until the ensemble accuracy no longer improves.

The final ensemble was the union of the models selected across training subsets.

Evaluation on Held-Out Data

To estimate MHCflurry BA performance across MHC class I alleles (Figure S1; Table S1), we evaluated the full ensemble of trained

models (i.e. prior tomodel selection) on the held-out model selection data. For eachmodel selection data point, only themodels in the

ensemble that were not trained on that point were used to generate a prediction. The results are expected to slightly underestimate

true predictor accuracy, asmodels that were not selected by themodel selection routine due to poor performance are still included in

the evaluation. For each allele, the evaluation dataset consists of three sources: (1) held-out affinity measurements, which we labelled

as binders or non-binders using a 500 nM threshold, (2) held-out MS-identified peptides (binders), and (3) peptides randomly

sampled from the proteome (non-binders). The number of synthetic non-binder peptides sampled from the proteome was set to

be four times the number of binders, split evenly across lengths 8, 9, 10, 11. We computed AUC at distinguishing binders from

non-binders for each allele, using bootstrap resampling to derive a 95% confidence interval.

Performance Evaluation on Alleles with No Representation in the Training Data Set

To better understandMHCflurry BA accuracy on alleles in theMONOALLELIC benchmark that had no entries in the training data (Fig-

ure S2C; Table S5), we compared the AUC for these samples to that obtained using predictions for related alleles with substantial

training data. As in all evaluations on the MONOALLELIC benchmark, a variant of MHCflurry BA trained without this dataset was

used. Distance between alleles was defined as the number of differing positions in the 37-mer sequences provided as input to

the predictor. Each allele was matched to the most-similar allele with at least 50 entries in the training set. Two alleles had more

than one equally-similar allele using this approach (A*34:02 matched A*03:01, A*68:01, and A*68:23; C*03:02 matched C*03:04

and B*46:01), and we broke ties by selecting the similar with the most training data. The MHCflurry BA predictor was evaluated

on the relevant samples in the MONOALLELIC benchmark using the corresponding selected similar alleles.

Antigen Processing Predictor
The MHCflurry 2.0 AP predictor is trained to model the MHC allele-independent effects that were not captured by the BA predictor.

We designed it with proteasomal cleavage prediction in mind, although the resulting models are expected to capture a range of ef-

fects. Since the efficiency of cleavage by proteasomes and peptidases are affected by the residues both before and after the cut site,

we experimented with the inclusion of the flanking sequence on either side of the peptide from its source protein. To understand the

importance of flanking sequences, we trained two variants of the MHCflurry 2.0 AP predictor: one takes as input a peptide plus the

five amino acids on either side in its source protein (AP with flanks) and one takes only a peptide (AP without flanks). Both models are

independent of MHC allele.

Training Data

The AP predictor is trained on the MS hits from the MONOALLELIC benchmark samples (Data S5). Hits of length 8-11 were matched

1:100 to decoys of the same length and from the same proteins. The resulting peptides for each sample were sorted byMHCflurry 2.0

BA prediction for the relevant allele, and the top 2% strongest binding peptides (hits and decoys) were selected for inclusion in the AP

predictor’s training set. This resulted in a training set of 399,392 entries (encompassing 297,548 distinct peptides, as duplicate
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peptides were sometimes selected from different MS samples), of which 175,836 (44%) were hits. The median BA prediction for the

peptides in AP training set was 73 nM for decoys and 38 nM for hits.

Neural Network Architectures

AP models were trained using 128 neural network architectures with a similar overall design but varying in layer sizes, activation

function, level of L1 weight regularization, and dropout rate. The input to each network consists of peptides and flanking se-

quences (if used) as they occur in the source protein (N-flank - peptide - C-flank), with each amino acid encoded as a 21-dimen-

sional vector using the BLOSUM62 substitution matrix extended to include an X symbol, as in the BA predictor. The sequence is

right-padded with X characters to generate fixed-length inputs of length 25 (AP with flanks) or 15 (AP without flanks). The first

layer is convolutional, with a kernel size of 11-17 and 256 or 512 filters, tanh or relu activation, and dropout. This transforms the

input sequence into a new sequence of the same length but with up to 512 channels instead of 21. From this representation, two

parallel convolutional layers with a kernel size of 1 (i.e. each position is considered independently) are applied to predict the

favorability of an ‘‘N-terminal cut’’ and a ‘‘C-terminal cut’’ at each position in the sequence. The cut site predictors are imple-

mented using two stacked convolutional layers with a kernel size of 1, and thus can be thought of as 2-layer dense networks

that consider a single position in the learned representation of the input sequence. For example, in one model architecture the

‘‘C-terminal cut’’ predictor takes a 512-vector corresponding to a position in the input sequence and applies a dense layer with

8 outputs followed by a single-output dense layer. The final layer in the AP architecture is a dense layer that integrates these

cut-site predictor results. It takes as input: (1) the N-terminal cut site prediction at the peptide N-terminus, (2) the max of the

N-terminal cut site predictions across the rest of the peptide, (3) the C-terminal cut site prediction at the peptide C terminus,

and (4) the max of the C-terminal cut site predictions across the rest of the peptide. This design is motivated by the intuition that

presented MHC class I ligands must have favorable cleavability at their termini but avoid cleavage at interior residues. To give

the model further opportunity to consider average properties of the flanking sequences (e.g. secondary structure), two addi-

tional inputs are given to the final layer: (5) the result from a dense layer applied to the per-channel average of the initial convolu-

tional layer across the N-flank, (6) a similar result for the C terminus. The final layer in the AP predictor is thus intended to model

the tradeoff between cleavability at the peptide termini, cleavability at interior positions in the peptide, and overall favorability of

cleavage given the flanking sequences.

Model Training and Selection

The training data was sampled to generate four subsets, where each training subset held out 10 randomly selected MS experiments.

Models corresponding to the 128 neural network architectural variants were fit to each training subset (512 models total). Models

were trained using the Adam optimizer(Kingma and Ba, 2014) and binary cross entropy loss with a random 10% of each training sub-

set used for early stopping. Model selection was performed for each training subset separately using AUC on the held-out data as the

accuracy metric. The final selected ensemble included 8 models.

Evaluation on ‘‘Mass Spectrometry Analysis of Proteolytic Peptides’’ (MAPP) Data

Proteasome-cleaved peptides of lengths 8-11 were extracted from Wolf-Levy et al., Supplementary Data 2(Wolf-Levy et al., 2018).

Peptides identified in any experiment (untreated or TNF/IFN-treated) were included. For each observed peptide (hit), two length-

matched unobserved decoy peptides were randomly sampled from the same gene. To avoid any contribution from the cysteine

detectability bias, all peptides (hits and decoys) containing cysteine were dropped.

Presentation Score Model
The MHCflurry 2.0 PS predictor is a two-input logistic regression model that integrates a BA prediction (tightest predicted binding

affinity over the MHC class I alleles for a sample) with an AP prediction to give a composite prediction, referred to as the presentation

score. It has just three learned parameters: two coefficients and an intercept. In contrast to the BA and AP predictors, which use only

monoallelic MS, the PS model is fit to multiallelic MS datasets. Training data for the PS model was generated using the MULTIAL

LELIC-OLD set of samples by sampling length-matched decoys (two decoys per hit) from the same proteins as the hits and sampling

10% of the resulting dataset for efficiency. The training set included 75,378 entries (of which 24,983 were hits) from 56 samples (Data

S6). The model was fit using the logistic regression implementation in scikit-learn(Pedregosa et al., 2011) with the LBFGS solver and

default parameters. Two variants of the PS model were generated: one that made use of the AP with flanks predictor (i.e. upstream

and downstream amino acids included) and another that used the AP without flanks predictor. The PS model was benchmarked on

the MULTIALLELIC-RECENT samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

Accuracy Metrics
We assessed predictor accuracy at distinguishing MS hits from decoys using two scores, area under the curve (AUC) and

positive predictive value (PPV). The AUC is a standard accuracy metric for classification tasks, interpretable as the probability

that a randomly selected hit will be scored higher by a predictor than a randomly selected decoy. The PPV, as defined here,

focuses on a predictor’s ability to rank hits far above the decoys. To calculate PPV, for each sample we sorted the n hits and 99n

decoys by their predictions, and calculated the fraction of the top n peptides that are hits. A random predictor would score 0.01

in PPV and 0.5 in AUC.
e6 Cell Systems 11, 42–48.e1–e7, July 22, 2020



ll
OPEN ACCESSMethods
Statistical Significance
To compare predictors (Figures 1C, 3C, and S2) or benchmark variants (Figure 2D), we computed the percent difference in accuracy

score (AUC or PPV) for each sample in the benchmark and calculated the mean difference across samples as well as its 95% con-

fidence interval by bootstrap resampling of the benchmark samples. Differences were deemed significant if the confidence interval

excluded the value 0.0. To quantify average accuracy (Figure 2B) or average prediction (Figure 2H), we calculated themean value and

its 95% confidence interval using bootstrap resampling. To test for differences in correlation between AP prediction and BA predic-

tion across groups of alleles (Figures 2F and 2G), we used the Mann-Whitney U test.
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