104540 VO/2 Bioinformatik SS2023

PART I (Hubert Hackl)

- I Transcriptional regulation
- II Biological sequence analyses
- III Gene expression analyses

PART II (Francesca Finotello)

- IV Functional and network analyses (Pathways, Enrichment)
- V Single cell analyses (scRNAseq)

104540 VO/2 Bioinformatik SS2023

PART I

Hubert Hackl Biocenter, Institute of Bioinformatics Medical University of Innsbruck Innrain 80, 6020 Innsbruck, Austria Tel: +43-512-9003-71403 Email: hubert.hackl@i-med.ac.at URL: http://icbi.at

	Human genome project
(>10 yr 2003 — comp (3,000 2007 — J Craig	ersion of the human genome ears, >3 billion \$, 20 labs) leted (high quality reference sequence) 0,000.000bp, 25.000 genes) Venter genome sequence Watson genome sequence
2012 - >150 c - > 20 r	reds of sequenced bacteria

Neandertal genome sequence

- Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology
- Draft sequence 2010 (Science) using 454 pyro-sequencing (Roche)
- Comparison with human and chimpanzee (e.g. speech-related gene FOXP2 with the same mutations as in human in contrast to chimp)
- Neanderthal admixture in modern human DNA?

Nomenclature of nucleic acids			
Base	Symbol	Occurrence	
Adenin Guanin Cytosin Thymin Uracil	A G C T U	DNA, RNA DNA, RNA DNA, RNA DNA RNA	
Symbol	Meaning	Description	
R Y W S M K H B V D N	A or G C or T A or T G or C A or C G or T A, C, or T (U) G, C, or T (U) G, A, or C G, A, or T (U) G, A, C or T (U)	puRine pYrimidine Weak hydrogen bonds Strong hydrogen bonds aMino groups Keto groups not G, (H follows G) not A, (B follows A) not T (U), (V follows U) not C, (D follows C) aNy nucleotide	

Nomenclature				
DNA sequences are always from 5' to 3'				
+ strand 5 ['] -ACGGTCGCTGTCGGTAGC-3 ['] - strand 3 ['] -TGCCAGCGACAGCCATCG-5 [']				
e.g. in fasta format : >gene sequence gi12345 chr17 - GCTACCGACAGCGACCGT				
Positions in the genome (genome assembly) are chromosome wise e.g. human GRCh37/hg19				
chr11:1-100 chr11:49,686,777-49,689,777 110154 154 p151 p143 141 11p13 11p12 p112 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 1121 11223 11233 11233 1123				
Positions in the chromosome start for both!! strands from position 1				
chr11:1 2523 2529 + strand 5'-ACGGTCGCTGTCGGTAGC-3' - strand 3'-TGCCAGCGACAGCCATCG-5' chr11:1 2523 2529				

Markov chains

Markov chains: a sequence of events that occur one after another. The main restriction on a Markov chain is that the probability assigned to an event at any location in the chain can depend on only a fixed number of previous events.

Scoring sequences (e.g. start codon ATG) 3 states (S1, S2, S3), p(A)=p(C)=p(G)=p(T)=0.25

S1 S2 **S**3 Т G Α

p(A)=0.91 p(C)=0.03 p(G)=0.03 p(T)=0.03
 p(A)=0.03
 p(A)=0.03

 p(C)=0.03
 p(C)=0.03

 p(G)=0.03
 p(G)=0.91

 p(T)=0.91
 p(T)=0.03

Markov chain 0th order p(ATG)=0.91³=0.752

Markov chain 1^{th} order p(ATG)=p(A)*p(T|A)*p(G|T)

Re	ead alignment
Read alignment (mapping)	Mio. reads Reference genome
Point mutations, indels Mapped reads \rightarrow Reference genome \rightarrow Sequences, Mu	DNAseq Lintrons DNAseq Atations Normalization, Quantification

Exact string matching			
Problem			
10 mio. short sequence reads (100 bp)			
Reference genome (hg38) (3*10 ⁹ bp)			
ζ String matching problem in text processing			
1 Naïve approach			
T ¹ LOREMIPSUMELVISALIIVEDOLORSIITA			
E L V I S A L I V E E L V I S			
O[(n-m+1)*m]			
s=10 ⁷ m=10 ² n=3*10 ⁹ 🖞 10 ⁷ *(3*10 ⁹ -99)*10 ² = max. 3*10 ¹⁸ comparisons			
′ (}			
Desktop PC: 10 ¹² floating point operations/s			

Hamming distance: Number of letters in which sequences have different le	•	differ (not valic	l if the
	s	AAT	AGCAA	AGCACACA
	t	TAA	ACATA	A-CACACTA
				-
	HD(s,t)	2	3	2
Levenshtein distance: w(a,a)=0 w(a,b)=1 for a≠b w(-,a)=w(b,-)=1	HD(s,t)	2		2 eletion inserti AGCACAC-A A-CACACTA

PAM matrices

- Margaret Dayhoff, 1978
- Point Accepted Mutation (PAM)
 - Look at patterns of substitutions in related proteins
 - The new side chain must function the same way as the old one ("acceptance")
 - On average, 1 PAM corresponds to 1 amino acid change per 100 residues
 - 1 PAM ~ 1% divergence
 - Extrapolate to predict patterns at longer distances

BLOSUM62 S 1 -1 T 0 -1 0 -3 B -2 -1 N -2 0 6 1 -3 D -2 -2 1 6 -3 $\begin{array}{c} C & Q \\ 0 & -1 \\ -3 & 1 \\ -3 & 0 \\ 9 & -3 & 0 \\ 9 & -3 & 5 \\ -4 & 2 \\ -3 & -2 \\ -3 & 0 \\ -1 & -2 \\ -3 & 1 \\ -1 & 0 \\ -1 & -2 \\ -3 & -1 \\ -1 & 0 \\ -1 & -1 \\ -2 & -2 \\ -3 & 0 \\ -1 & -2 \\ -3 & 0 \\ -1 & -2 \\ -3 & 4 \\ -1 & -1 \\ -4 & -4 \\ \end{array}$ E -1 0 2 -4 $\begin{array}{c} L \\ -1 \\ -2 \\ -3 \\ -4 \\ -2 \\ -3 \\ -4 \\ -2 \\ 2 \\ 0 \\ -3 \\ -2 \\ -1 \\ -4 \\ -3 \\ -1 \\ -4 \end{array}$ J -1 -2 -1 0 1 -3 ARNDCOEGHILKMFPSTWYV $-1 \\ -1$ -4 4 4 -3 -2 -3 -3 -1 -1 -1 -1 -4 -4 -4 $\begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ -2 \\ -2 \\ 0 \\ -1 \\ -2 \\ -2 \\ 0 \\ -2 \\ 0 \\ -1 \\ -4 \\ \end{array}$ $\begin{array}{c} -3 \\ -3 \\ -1 \\ -2 \\ -2 \\ -3 \\ 3 \\ 1 \\ -2 \\ -2 \\ -3 \\ -1 \\ 4 \\ -3 \\ 2 \\ -1 \\ -4 \end{array}$ 0 1 -1 000 0 2 -1 -2 -3 -4 -1 -1 -1 -4 -4 -4 $\begin{array}{c} 2\\ 5\\ -2\\ 0\\ -3\\ -3\\ 1\\ -2\\ -3\\ -1\\ 0\\ -1\\ -3\\ -2\\ -2\\ 1\\ -3\\ 4\\ -1\end{array}$ 442 -3333 0 -3 -3 -1 -1 -1 -1 -1 -1 $\begin{array}{r}1\\-3\\-2\\-3\\-2\\-2\\-3\\-2\\-4\\-2\\-3\\4\\-3\\-1\end{array}$ 0 - 3 - 0 0 - 3 - 2 0 - 1 4 - 3 - 3 4 - 3 0 - 1 1 20 -3 -1 -1 -1 -3 -1 -2 -1 -2 ō -1 -2 -1 -4 -1 -1 -1 -1 -3 -3 -3 -1 -2 -2 -2 -3 -3 -3 -1 B J Z X -4 -1 -1 -4 -4 -4 1 -1 -4

Summary of substitutions matrices

- Triple-PAM strategy (Altschul, 1991)
 - PAM 40 short alignments, highly similar
 - PAM 120
 - PAM 250 longer, weaker local alignments
- BLOSUM (Henikoff, 1993)
 - BLOSUM 90 short alignments, highly similar
 - BLOSUM 62 most effective in detecting known members of a protein family (Standard in BLAST)
 - BLOSUM 30 longer, weaker local alignments
- No single matrix is the complete answer for all sequence comparisons

W-mer indexing

• Preprocessing:

For every W-mer (e.g., W=3) store every location in the database where it occurs (can use hashing if W is large)

- Query:
 - Generate W-mers and look them up in the database.
 - Process the results
- Running time benefit:
 - For W=3, if the sequences are "random", then roughly one W-mer in 23³ will match, i.e., one in a ten thousand
 - We hit only a small fraction of all sequences

BLAST Finds inexact, ungapped "seeds" using a hashing technique (like FASTA) and then extends the seed to maximum length possible. Based on strong statistical/significance framework "What is a significantly high score of two segments of length N and M?" Most commonly used for fast searches and alignments. New versions now do gapped segments.

Stephen Altschul

Samuel Karlin

	NCBI Blast	
Program	Query sequence	Subject sequence
BLASTN	Nucleotide	Nucleotide
BLASTP	Protein	Protein
BLASTX	Nucleotide six-frame translation	Protein
TBLASTN	Protein	Nucleotide six-frame translation
TBLASTX	Nucleotide six-frame translation	Nucleotide six-frame translation

	astx tblastn tblastx BLASTP programs search protein databases using a protein query, more		
Enter Query	Sequence		
	number(s), gi(s), or FASTA sequence(s) 🥹 <u>Clear</u> Query subrange 🥹		
mitochondrial p MLKFRTVHGGLRLLG RTVAIYSEQ	cef(ND_000911.2) pyruwate carboxylase, From procursor (Nono sepiens) JIRRTSTAPAASPNVRALEYKDIKKVAVIANDGEIAIRVFRACTELGI LIGRGLAPVQAYLHIPDITKVAKENNVDAVHPGYGFLSERADFAQAC • To		
Or, upload file	Durchsuchen_ Keine Datei ausgewählt.		
Job Title	gi[106049295]ref[NP_000911.2] pyruvate carboxylase,		
🗖 Align two or n	nore sequences () Reference p	ant protein seque proteins (refseq_p wiss-Prot(swissp	rotein) rot)
Choose Sear	ch Set Protein Data	otein sequences(Bank proteins(p	
Database		ic proteins(env_n ne Shotgun Asse	r) mbly proteins (tsa_nr)
Organism Optional	Mus musculus (taxid:10090) Exclude + Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. @	Algorithm parameters	
Exclude	Models (XM/XP) 🔲 Uncultured/environmental sample sequences	General Param	
Optional Entrez Querv		Max target sequences	100 - Select the maximum number of a
Optional	You Tube Create custom o	Short queries	Automatically adjust parame
		Expect threshold	10
	action	Word size	3 • 0
Program Sele			-
Program Sele Algorithm	blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST)	Max matches in a query range	0
	blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PH-BLAST (Pattern Hit Initiated BLAST)	Max matches in a	•
	blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST)	Max matches in a query range	•
	blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PH-BLAST (Position-Specific Iterated BLAST) DELTA-BLAST (Domain Enhanced Lookup Time-Accelerated BLAST) Choose a BLAST algorithm @	Max matches in a query range	eters

Goals of mul	tiple sequence alignment
 Determine Conser – Prosite, eMOT – ClustalW, MAC 	-
 Building Gene Fam – Blocks, Prints, 	illies ProDom, pFAM, DOMO, eBLOCKs
– Clusters – Relationships – Evolutionary N	hips & Phylogenies Iodels ee, MACAW, PAUP
– Profiles, Temp – Hidden Marko – Network Mode	uctures for Threading and Fold Prediction ates, HSSP, FSSP v Models, pFAM, SAM els, Neural Nets, Belief Nets lels, Generalized Linear Models

Experimental methods

- Reporter gene assays (luciferase)
- Electro mobility shift assays (EMSA)
- DNase I and Exonulease Footprinting
- SELEX
- Chromatin immuno precipitation (ChIP)

Gene	Organism	5'-3' Sequence	Ref
CYP4A6/P450 IV	rabbit	AACT AGGGCA A AGTTGA	[1]
CYP4A1/P450 IV	rat	AACT AGGGTA A AGTTCA	[2]
L-fatty acid binding protein	rat	ATAT AGGCCA T AGGTCA*	[3]
3-hydroxy-3-methyl-glutaryl-CoA-synthase	rat	AACT GGGCCA A AGGTCT*	[4]
Enoyl-CoA-hydratase	rat	ATGT AGGTAA T AGTTCA*	[1]
Malic enzyme	rat	TTCT GGGTCA A AGTTGA	[5]
Phosphoenolpyruvate carboxikinase	rat	AACT GGGATA A AGGTCT	[6]
Phosphoenolpyruvate carboxikinase)	rat	CCCA CGGCCA A AGGTCA*	[6]
Uncoupling protein 1	mouse	AGTG TGGTCA A GGGTGA*	[]
Apolopoprotein C-III	human		[*]
Acyl-CoA oxidase	human	TAGA AGGTCA G CTGTCA GTCT GCCCTT T CCCCCT*	[13
Lipoprotein lipase	human		1.1
Muscle type carnitine palmitoyltransferase I	human	CCTT TTCCCT A CATTTG	[15]

		n	fre	eq	ue	ncy	/ m	atr	ix									
_																		
	1	2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	10	8	8	4	3	11	0	1	1	2	19	15	17	2	0	0	0	16
С	3	+ -	-	11	5	1	1	2	6	15	0	1	4	1	1	2	17	2
G			2	4	2	7	20	19	6	1	1	2	1	17	15	1	4	1
T									7	4	2	4	0	2	6	19	1	
	itio		we					•	PW	/M)),		-	_	0	19	1	3
		n	we	eig	ht	ma	atri	x (I	PW	/M)),		-	_	0	19	1	3
	itio	n v on :	we	eig	ht	ma	atri	x (I	PW	/M)),		-	_	14	15	1	3
	itio itio	n v on 2	we sp	eig bec	ht fic	ma c sc	atri cori	x (l ing 7	PW ma	/M) atri) <i>,</i> ix (PSS 11	5M)	14	15	16	17
oos	itio itio	n v on 5 0.4	we sp 2	eig Dec 3	tht fic 4 -0.87	ma C SC 5	etri cori	x (ling 7	PW ma -2.32	/M) atri), ix (10	PSS 11 1.45	5M 12 1.63) 13 -1.46	14 -1.32	15 -1.32	-1.32	17 1.54
OS A	tio itio 1	n v n 2 3 0.€ 7 -0.4	W(Sp 2 54 - .46	eig Dec 3 -0.46	tific 4 -0.87 -0.14	ma C SC 5 1.00 -2.46	6 -1.32 -2.46	x (l ing -2.46 -1.46	PW ma -2.32 0.26	/M) atri 9), ix (10 1.79 -1.32	11 1.45 -2.46	12 1.63 -0.46) 13 -1.46 -2.46	14 -1.32 -2.46	15 -1.32 -1.46	16 -1.32 1.63	17 1.54 -1.46

III Gene expression analysesMicroarraysRNA sequencing

- Gene expression profiling
- Clustering and classification
- Gene ontology

								te	est	Z	7		
	ID	GENE	к01	ко2	коз	WT1	WT2	WT3	logFC	AveExpr	t	P.Value	adj.P.Va
T	10386473	Srebf1	5.72	5.58	6.06	4.91	4.88	5.09	0.83	5.33	7.66	3.7E-09	4.6E-05
	10463355	Scd2	6.63	6.26	6.92	5.13	4.77	5.01	1.64	5.59	7.52	5.6E-09	4.6E-05
	10548105	Ccnd2	5.56	5.48	5.49	5.05	5.11	5.02	0.45	5.23	5.21	7.3E-06	3.9E-02
	10587284	ElovI5	5.81	5.67	5.97	5.05	5.06	5.35	0.66	5.44	4.87	2.1E-05	8.4E-02
	10540122	Slc6a6	7.27	7.16	7.35	6.75	6.81	6.71	0.50	7.04	4.80	2.6E-05	8.5E-02
	10605437	Pls3	5.50	5.63	5.41	4.88	4.93	4.87	0.62	5.20	4.63	4.3E-05	9.7E-02
	10543791	Podxl	7.30	7.03	7.08	6.31	6.52	6.33	0.75	6.59	4.61	4.6E-05	9.7E-02
	10356084	lrs1	8.30	8.76	7.61	6.62	7.33	7.19	1.18	7.60	4.57	5.2E-05	9.7E-02
¥	10346164	Sdpr	5.68	5.37	5.43	5.00	5.03	4.95	0.50	5.17	4.54	5.7E-05	9.7E-02
	10387625	Chrnb1	6.31	6.08	6.06	5.73	5.59	5.81	0.44	6.01	4.52	6.0E-05	9.7E-02
	10407390	Ptbp1	4.84	5.26	5.07	4.22	3.98	4.64	0.77	4.88	4.43	8.0E-05	1.1E-01
	10507539	Elovl1	5.08	4.58	4.89	4.33	4.34	4.55	0.44	4.61	4.40	8.7E-05	1.1E-01
	10585988	Myo9a	4.05	4.00	4.01	3.50	3.64	3.79	0.38	3.93	4.39	9.1E-05	1.1E-01
	10371959	Elk3	5.94	5.85	5.78	5.28	5.44	5.46	0.47	5.66	4.38	9.3E-05	1.1E-01

Definition:	<fastq> := <block>+</block></fastq>		
	<block> := @<seqname> \n <s< th=""><th>seq> \n \+<seqname>? \n</seqname></th><th><qual> \n</qual></th></s<></seqname></block>	seq> \n \+ <seqname>? \n</seqname>	<qual> \n</qual>
<se< th=""><th>qname> := [A-Za-z0-9 .:-]+</th><th></th><th></th></se<>	qname> := [A-Za-z0-9 .:-]+		
	<seq> := [A-Za-z\n\.~]+</seq>		
	<pre><gual> := [!-~\n]+</gual></pre>		
	<qual> := [!-~\n]+</qual>		
@EAS54 6 R	1 2 1 413 324		
CCCTTCTTGT	CTTCAGCGTTTCTCC	Quality scores ar	е
+		encoded in ASCI	I
;;3;;;;;;;	;;;;;7;;;;;88		
	3333333333333333333333333	K	
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$			
555555555555555555555555555555555555555			
		JJJJJJJJJJJJJJJJJJJJJJJ	
LLLLLLLLLLLLLLLLL	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII JJJJJJJJ	IIIIIIIIIIIIIIIIIII JJJJJJJJJJJJJJJJJJ	
LLLLLLLLLLLLLLLLL		IIIIIIIIIIIIIIIIIII JJJJJJJJJJJJJJJJJJ	
LLLLLLLLLLLLLLLLLLLL !"#\$%&'()*+,/012 33	IIIIIIIIIIIIIIIIIIIII JJJJJJJJJJJJJJJJ	IIIIIIIIIIIIIII JJJJJJJJJJJJJJJJJJJJJJ	rstuvwxyz{ }~
LLLLLLLLLLLLLLLLLL !#\$\$&:()*+,/012 33 \$ - Sanger I X - Solexa 5	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIII JJJJJJJJJJJJJJJJJJJJ	rstuvwxyz{ }~
LLLLLLLLLLLLLLLLL 1"#\$\$&'()*+,/012 1 33 S - Sanger I X - Solexa S I - Illumina 1.3+ I J - Illumina 1.5+ I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIII JJJJJJJJJJJJJJJJJJJJJ	rstuvwxyz{ }~

	RPK	M (FF	PKM)			TPM			
	GENE	S1	S2	S3	GENE	S1	S2	S3]
	A (2kb)	10	12	30	A (2kb)	10	12	30	1
	B (4kb)	20	25	60	B (4kb)	20	25	60	1
	C (1kb)	5	8	15	C (1kb)	5	8	15	1
	D (10kb)	0	0	1	D (10kb)	0	0	1	
	Tens(Mio)	3.5	4.5	10.6	1. Divide b	y gene	length	in kb	
	1. Divide b	y milli	ons of	reads	A (2kb)	5	6	15	
	A (2kb)	2.86	2.61	2.83	B (4kb)	5	6.25	15	
RPM	B (4kb)	5.71	5.43	5.66	C (1kb)	5	8	15	RPK
REIVI	C (1kb)	1.43	1.96	1.42	D (10kb)	0	0	0.1	
	D (10kb)	0.00	0.00	0.09	Tens(Mio)	1.5	2.025	4.51	
	2. Divide b	y gene	elength	n in kb	2. Divide k	y millio	ons of	RPK	
					. (011)				1
	A (2kb)	1.43	1.30	1.42	A (2kb)	3.33	2.96	3.326	
RPKM	- ()	1.43 1.43	1.30 1.36	1.42 1.42	A (2kb) B (3kb)	3.33 3.33	2.96 3.09	3.326 3.326	TDN
RPKM	- ()	-			. ,				TPN

.gov on tool (over representation of the second sec	on and Integrated Discov resentation analysis) AVID Bioinformatics Resources 6.7 Institute of Alergy and Infectious Deceses (NAD), NH Heie and Me
Control Control Contro Control Control Control Control Contro	I institute of Allergy and Infectious Diseases (NIAID), NIH Help and Mar
Sene List: List_1 Jackground: Mus musculus ID IDs Joptions Create Sublist cords	
Jackground: Mus musculus ID IDs goptions goptions acords	1
g Options Creste Sublist	10
ecords	1 4
ecords	PA
	in Downloa
ategory ¢ <u>Term</u>	d RT Genes <u>Count</u> <u>%</u> d <u>P-Value</u> Be
RM_BP_ALL cellular process	RT 597 62,1 1,0E-18 2, RT 407 42,3 2,5E-13 3,
RM_BP_ALL cellular metabolic process RM_BP_ALL regulation of cellular metabolic process	RT 407 42,3 2,5E-13 3, RT 227 23.6 1,1E-12 1,
RM_BP_ALL regulation of metabolic process	RI 236 24,5 1,7E-12 1,
RM_BP_ALL regulation of gene expression	RI 202 21,0 6,1E-12 3,
	RI 198 20,6 1,1E-11 4,
	RI 203 21,1 1,4E-11 5,
	RI 203 21,1 2,0E-11 6, RI 215 22,3 4,0E-11 1,
	RI 324 33,7 6,1E-11 1,
	RT 212 22,0 1,3E-10 3,
	RT 183 19,0 2,6E-10 5,
RM_BP_ALL positive regulation of cellular biosynthetic process	RT 67 7,0 3,4E-10 7,
	TEM, BP, ALL regulation of mercunicative bioexchildre access trans. BP, ALL regulation of bioexchildrene access TEM, BP, ALL regulation of bioexchildrene access TEM, BP, ALL regulation of mercunicative metabolic accesses TEM, BP, ALL regulation of commence access TEM, BP, ALL regulation of transcription TEM, BP, ALL regulation of transcription