104540 VO/2 Bioinformatik SS2023

PART I (Hubert HackI)

I Transcriptional regulation
II Biological sequence analyses
III Gene expression analyses

PART II (Francesca Finotello)

IV Functional and network analyses (Pathways, Enrichment)
V Single cell analyses (scRNAseq)

104540 VO/2 Bioinformatik SS2023

PART I

Hubert HackI
Biocenter, Institute of Bioinformatics
Medical University of Innsbruck
Innrain 80, 6020 Innsbruck, Austria
Tel: +43-512-9003-71403
Email: hubert.hackl@i-med.ac.at
URL: http://icbi.at

I Transcriptional regulation

- Introduction
- Gene Regulation

Prokaryotes
Eukaryotes

- Genome analysis

Hidden Markov Models

History

- 1995
- Two bacterial genomes decoded (TIGR)

Mycoplasma genitalium (580.070 bp)
Haemophilus influenza ($1,830.137 \mathrm{bp}, 1.740$ genes)

- First DNA microarray studies published

- 1996
- Saccharomyces cerevisiae (bakers yeast) decoded (12,000.000 bp, 6.000 genes)
- 1998
- Caenorhabditis elegans (worm) genome decoded
(97,000.000bp, 19.000 genes)

- 2000
- Genome of Drosophila melanogaster (fruit fly) (180,000.000bp, 14.000 genes)

Human genome project
2000

- Draft version of the human genome (>10 years, >3 billion \$, 20 labs)
2003
- completed (high quality reference sequence)
 (3,000,000.000bp, 25.000 genes)
2007
- J Craig Venter genome sequence
- James Watson genome sequence (2 months, 454 sequencing, 1 million \$)

2012

- >150 eukaryotic genomes sequenced
- > 20 mammals
- Hundreds of sequenced bacteria and viruses

Large scale genomics projects

1000 Genomes Project (=> 100.000 genomes project)

- Study human genetic variation of >1.000 human genomes

Genome10k

- whole genome sequencing of 10.000 vertebrates

International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)

- To obtain a comprehensive description of genomic, transcriptomic and epigenomic changes in 50 different tumor types and/or subtypes.

TCGA (The Cancer Genome Atlas)

https://tcga-data.nci.nih.gov

NATIONAL CANCER INSTITUTE
THE CANCER GENOME ATLAS

Pan-Cancer Analysis of Whole Genomes Consortium

>2600 whole cancer genomes
38 tumor types
750 affiliations

Feb 2020

Human pangenome reference

- 47 phased, diploid assemblies from a cohort of genetically diverse individuals
- cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels

Lia et al. Nature 2023

ENCODE (Encyclopedia of DNA Elements)

32 institutes
442 consortium members
1640 data sets
30 papers (Sept 2012)
http://www.nature.com/encode http://genome.ucsc.edu/ENCODE/ http://www.genome.gov/10005107

The vast majority (80.4%) of the human genome participates in at least one biochemical RNA- and/or chromatin-associated event in at least one cell type.

Nomenclature of nucleic acids

Base	Symbol	Occurrence
Adenin	A	DNA, RNA
Guanin	G	DNA, RNA
Cytosin	C	DNA, RNA
Thymin	T	DNA
Uracil	U	RNA

Symbol	Meaning	Description
R	A or G	puRine
Y	C or T	pYrimidine
W	A or T	Weak hydrogen bonds
S	G or C	Strong hydrogen bonds
M	A or C	aMino groups
K	G or T	Keto groups
H	A, C, or T (U)	not G, (H follows G)
B	G, C, or T (U)	not A, (B follows A)
V	G, A, or C	not T (U), (V follows U)
D	G, A, or T (U)	not C, (D follows C)
N	G, A, C or T (U)	aNy nucleotide

Nomenclature

DNA sequences are always from 5' to 3'

+ strand 5^{\prime}-ACGGTCGCTGTCGGTAGC-3'
- strand 3^{\prime}-TGCCAGCGACAGCCATCG-5’
e.g. in fasta format :
>gene sequence|gi12345|chr17|GCTACCGACAGCGACCGT

Positions in the genome (genome assembly) are chromosome wise
e.g. human GRCh37/hg19
$\underset{\leftarrow}{\text { chr11:1-100 chr11:49,686,777-49,689,777 }}$

Positions in the chromosome start for both!! strands from position 1

chr11:1	2523	2529
	\searrow_{T}	
chr11:1	$\stackrel{7}{2523}$	2529

We have the genome sequence, so do we know everything?

No

The genome (transcriptome) is dynamic, the activity of the genes is changing over time and according to the environment or signals.

How is this regulated?
-Gene regulation in prokaryotes
-Gene regulation in eukaryotes

Prokaryotic transcriptional regulation

1. Lead to rapid increases and decreases in the expression of genes in response to environmental stimuli

- Plasticity to respond to ever changing environment

2. Those that involve pre-programmed or cascades of gene expression

- Set A \rightarrow Set B \rightarrow Set C......
- Usually expressed in order

Response to environmental stimuli

- Gene expression (protein production) energetically expensive
- Extensive and sophisticated systems to regulate gene expression to conserve precious metabolic energy
- Transcriptional regulation has largest effect on phenotype

Example lack of glucose but abundance of lactose

- Turn on or induce expression of Lactose catabolism genes
- Induces transcription of gene for lactose utilization
- Catabolic (degradative) pathways often are inducible

Prokaryotic transcriptional regulation

- lac operon as example for inducible system (E. coli)

- If lactose is not present (resting state) repressor binding to promoter prevents binding of polymerase => no mRNA expression
- If lactose is present repressor is inactivated by conformational changes => mRNA expression of structural genes

Prokaryotic transcriptional regulation

- Glucose and the lac operon
- Lactose is metabolised into glucose so what happens if glucose is present.
- Catabolite-activation protein (CAP): CAP must be present to make RNA polymerase binding efficiently

- In the presence of glucose the CAP is altered and prevents RNA polymerase binding to the promoter region and so prevents transcription.

Response to environmental stimuli

- Example tryptophan (essential amino acid)
- E.coli can synthesize most molecules needed to growth
(Amino acids, purines, pyrimidines, and vitamins)
- When Trp is present in the environment biosynthesis should be turned off
- Anabolic (biosynthetic) pathways often are repressible

Prokaryotic transcriptional regulation

- trp operon as an example for a repressible system

- If tryptophan is present the repressor-tryptophan complex binds to operator => no mRNA expression of structural genes.
- Translation and transcription are coupled (regulation by leader sequence and attenuation)

Translational Control of Gene Expression

- Prokaryotes regulate at Transcription
- Translational control used for fine tuning
- Transcription, Translation, mRNA degradation are coupled
- Three general mechanisms

1. Unequal efficiencies of translational initiation
2. Altered efficiencies of ribosome movement
3. Differential rates of mRNA degradation

Gene regulation in eukaryotes

Gene expression in eukaryotes

- Two cellular compartments:
- Transcription in nucleus
- Translation in cytoplasm
- RNA processing
- 5'capping
- RNA splicing
- 3'polyadenylation

Alternative splicing

(a) Alternative selection of promoters (e.g., myosin primary transcript)

(b) Alternative selection of cleavage/polyadenylation sites (e.g., tropomyosin transcript)

(c) Intron retaining mode (e.g., transposase primary transcript)

(d) Exon cassette mode (e.g., troponin primary transcript)

- Dependent on RNA/Spliceosome interaction
- Economizes on genetic information
- Create numerous related yet different proteins

Peptid chain, amino acid sequence, proteins

Protein sequences are always form N-terminal end to C-terminal end
E.g.. SCD sequence in fasta format
>gi|53759151|ref|NP_005054.3| acyl-CoA desaturase [Homo sapiens] MP AHLLQDD ISSSYTTTTTITAPPSRVLQNGGDKLETMPLYLEDD IRPD IKDD IYDPTYKDKEGPSPKVE YVWRN I ILMSLLHLGALYGITL IPTCKFYTWLWGVFYYFVSALGITAGAHRLWSHRSYKARLPLRLFLII ANTMAFQNDVYEWARDHRAHHKFSETHADPHNSRRGFFFSHVGWLLVRKHPAVKEKGSTLDLSDLEAEKL VMFQRRYYKPGLLMMCF ILPTLVPWYFWGETFQNSVFVATFLRYAVVLNATWLVNSAAHLFGYRPYDKNI SPRENILVSLGAVGEGFHNYHHSFPYDYSASEYRWHINFTTFFIDCMAALGLAYDRKKVSKAAILARIKR TGDGNYKSG

Basal transcription factors

Cis elements: sequences on DNA that affects the level of transcription.
Trans elements: DNA-binding proteins that change the level of transcription by basal transcription machinery.

Cis-regulatory elements of transcription

- Promoter (proximal regulation elements)

Region that is located immediately upstream of a protein-coding gene and binds to RNA polymerase II; where transcription is initiated; (TATA box) (H3K4me3)

- LCR (locus control region)

Super-enhancer sequences in eukaryotic cells that control the expression of distant gene families (e.g. beta-globin)

- Enhancers (distal regulation elements)

Eukaryotic DNA sequences that are necessary to activate gene transcription (p300, H3K4me1)

- Insulators

Separates active from inactive chromatin domains and interferes with enhancer activity when placed between an enhancer and a promoter (CTCF)

- Repressor/silencer

Negative regulators of gene expression (REST,SUZ12)

Signaling

Induction of transcription by environmental factors are less common in eukaryotes

Intercellular communication mediated by hormones

- Steroid Hormones
- cholesterol derivatives
- Easy pass through cell membrane
- Ex. Estrogen, progesterone, testosterone, glucocorticoids, ecdysone
- Peptide Hormones
- Peptides
- Don't pass through membrane
- Ex. Insulin, growth hormone, prolactin
- Other non-hormone proteins
- Nerve growth factor
- Epidermal growth factor

Classification of TF by function

Brivanlou AH, Darnell Jr JE. Science. 295: 813-818 (2002)

Regulation by phosphorylation

- Hormone activates kinase
- Kinase
phosphorylates transcription factor
- Transcription factor is activated

Principles of TF regulation

- 1 TF can target promoter of many genes
- >1 TF regulate expression of 1 gene (modules)
- Cascade of TF possible
- Positive feedback loop (autoregulation)
- Feed forward loop

Activators: histone acetylation

- Some activators recruit histone acetylase, which adds acetyl groups to histones
- Allows transcriptional machinery access to less condensed template DNA (euchromatin)

DNA methylation

- Once differential expression patterns have been set up epigenetic mechanisms can ensure that differential expression patterns are stably inherited when cells divide
- Methylation does not alter base pairing
- 3% of cytosines in human DNA are methylated
- ~76\% - 100\% of cytosines in CpG islands are methylated
- DNA methyltransferases (DNMT1, DNMT3A, DNMT3b), for maintenance and de novo methylation of DNA
- CpG methylation is regulated tightly during development and is associated with gene silencing, X-inactivation, and allele specific

Conservation of microRNA target sequences

$$
\begin{aligned}
& \begin{array}{l}
\text { Human } \\
\text { Mouse } \\
\text { 5-AAAAAGGGAAAAGUAGGCAMAUGUGARAAUAGUUUCAAUAUAUC-3 } \\
\text {--CAAAAGAAAAAUAGGCA AUGUGARAACAGUUUUAGCAUAUU }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 3^{\prime} \cdot \mathrm{CCUUUAGGGACCCGUUCCACUR-5} \text { ' miR-23a }
\end{aligned}
$$

\square

Human Genome

2.95 Gbases of 3.2 Gbases is euchromatin

- >90\% of euchromatin sequenced
- ~1\% of sequence encodes protein sequences

23,000 genes

- Small \# considering:
- Yeast - 6,000 genes
- Drosophila - 13,000 genes
- C. elegans - 19,000 genes
- A. thaliana-26,000 genes

Bioinformatics challenges in genome analysis

- Gene finding
- Start codon
- Exon-intron borders
- CpG-islands
- Repetitive sequences (Repeat Masker)
- Regulatory sequences

Solution:Hidden Markov Models (HMM)

Markov chains

Markov chains: a sequence of events that occur one after another. The main restriction on a Markov chain is that the probability assigned to an event at any location in the chain can depend on only a fixed number of previous events.

Scoring sequences (e.g. start codon ATG)
3 states (S1, S2, S3), $p(A)=p(C)=p(G)=p(T)=0.25$

$p(A)=0.91 \quad p(A)=0.03 \quad p(A)=0.03$
$p(C)=0.03 \quad p(C)=0.03 \quad p(C)=0.03$ $\mathrm{p}(\mathrm{G})=0.03 \quad \mathrm{p}(\mathrm{G})=0.03 \quad \mathrm{p}(\mathrm{G})=0.91$ $p(T)=0.03 \quad p(T)=0.91 \quad p(T)=0.03$

Markov chain $0^{\text {th }}$ order $p(A T G)=0.91^{3}=0.752$

Markov chain $1^{\text {th }}$ order $\mathrm{p}(A T G)=\mathrm{p}(A)^{*} \mathrm{p}(T \mid A)^{*} \mathrm{p}(G \mid T)$

Profile Hidden Markov Model

- For multiple alignments (e.g. DNA sequences)

$\mathrm{p}($ ACACATC $)=0.8^{*} 1^{*} 0.8^{*} 1^{*} 0.8^{*} 0.6{ }^{*} 0.4^{*} 0.6^{*} 1^{*} 1^{*} 0.8^{*} 1^{*} 0.8=0.047$ $\log -$ odds $=\log \left(\mathrm{p}(\mathrm{S}) / 0.25^{\mathrm{L}}\right)=\log \left(0.047 / 0.25^{7}\right)$

II Biological sequence analyses

- Mapping algorithms for NGS data
- Sequence alignment of 2 sequences
- Multiple sequence alignment
- Predictive models using protein sequences
- Regulatory sequences

Mapping algorithms for NGS data

Exact string matching

Problem

1 Naïve approach

E	L	V	I	S	A	L

E	L	V	I	S	A	L

Exact string matching algorithms

Z-box algorithm

$Z(k)=$ longest substring starting at k which is also prefix of the string
$\left.T^{1} G|A| T|A| T|A| T|T| T|G| A|C| A|T| A|T| A|A| T\right]^{n}$
$\left.P^{1} A|T| A|T| T|T| G|A| C|A| T|A| T|A| A \mid T\right]^{m}$
$Z 0020000104030120$

- There are a number of improvements and other string matching algorithms such as Boyer-Moore or Knutt-Morris-Pratt

Burrows-Wheeler transform

1. Append character (not part of alphabet)
2. Cyclic permutations
3. Sort lexicographic
4. Last column is Burrows-Wheeler transform (BWT, $B[i]$)

Backward search algorithm (FM index)

FM ...Full-text index in Minute space

Backward search algorithm for exact string matching

- FM-index can be also used for approximate string matching (kmismatch search) by backtracking.
- BWT is compressible (run length encoding, move-to-front)
- In the original Bowtie implementation of the BWT-based FM-index for the human genome requires only 1.3 GB of memory.

Sequence alignment of $\mathbf{2}$ sequences

Align biological sequences

- DNA (4 letter alphabet + gap)

TTGACAC
|| |||
tTTACAC

- Proteins (20 letter
alphabet + gap)
RKVA--GMAKPNM
|| |
RKIAVAAASKPAV
- We can align:
- Two sequences at a time (pair-wise sequence alignment)
- Many sequences simultaneously (multiple alignment)

Statement of the problem

Given

- 2 sequences
- Scoring system for evaluating match (or mismatch) of two characters
- Penalty function for gaps in sequences

Produce:

Optimal pairing of sequences that

- Retains the order of the sequences
- Introduces gaps
- Maximizes total score

Enumeration of all possible alignments

- Number of possible alignments of 2 sequences with length n and m

$$
\binom{n+m}{m}=\frac{(m+n)!}{(m!)^{2}} \approx \frac{2^{m+n}}{\sqrt{\pi \cdot m}}
$$

- For 2 sequences of length n

n	enumeration
10	184,756
20	$1.40 \mathrm{E}+11$
100	$9.00 \mathrm{E}+58$

Biology of gaps

AGKLAVRSTM IESTRVILTWRKW
AGKLAVRS--IE--RVILTWRKW
vs.
AGKLAVRSTM EST--RV ILTWRKW
AGKLAVRS------IERVILTWRKW
vs.
Many others...

Gap penalties

We expect to penalize gaps - the standard cost associated with a gap of length g :

- Linear gap penalty function

$$
\gamma(\mathrm{g})=-\mathrm{g}^{*} \mathrm{~d}
$$

- Convex gap penalty function (more realistic)

Affine score:

Distance scoring (DNA sequnces)

- Hamming distance:

Number of letters in which sequences differ (not valid if the sequences have different length)

s	AAT	AGCAA	AGCACACA
t	TAA	ACATA	A-CACACTA
$\mathrm{HD}(\mathrm{s}, \mathrm{t})$	2	3	2

- Levenshtein distance:

$$
\begin{aligned}
& w(a, a)=0 \\
& w(a, b)=1 \text { for } a \neq b
\end{aligned}
$$

$$
w(-, a)=w(b,-)=1
$$

deletion insertion	
s	$A G C A C A C-A$
t	$A-C A C A C T A$
$d(s, t)$	2

For two sequences, the distance is unique, but the optimal alignment (the one with minimal cost or distance) is not unique

Substitutions matrices (protein sequences)

- Unrelated or random model assumes that letter a occurs independently with some frequency q a.

$$
P(x, y \mid R)=\Pi q_{x i} \Pi q_{x j}
$$

- The alternative match model of aligned pairs of residues occurs with a joint probability pab.

$$
P(x, y / M)=\prod_{x i} y i
$$

- Odds ratio

$$
\frac{P(x, y \mid M)}{P(x, y \mid R)}=\frac{\Pi p_{x i y i}}{\Pi q_{x i} \Pi q_{y j}}=\Pi \frac{p_{x i} y i}{q_{x i} q_{y j}}
$$

Substitution matrices

- Log-odds ratio (score matrix or substitution matrix)
$s=\Sigma s(x i, y i)$ where $s(a, b)=\log \frac{p_{a b}}{q_{a} q b}$ for aligned pair (a, b)
$s>0$... more likely than random, $s<0$... less likely than random
- Physical properties of amino acids (e.g. hydrophob vs. hydrophil) are the reason that there are differences in the substitution scores
- Manually align protein structures (or, more risky, sequences)
- Look for frequency of amino acid substitutions at structurally nearly constant sites.

PAM matrices

- Margaret Dayhoff, 1978
- Point Accepted Mutation (PAM)
- Look at patterns of substitutions in related proteins
- The new side chain must function the same way as the old one ("acceptance")
- On average, 1 PAM corresponds to 1 amino acid change per 100 residues
- 1 PAM ~ 1\% divergence
- Extrapolate to predict patterns at longer distances

BLOSUM matrices

- Henikoff and Henikoff, 1992
- Blocks Substitution Matrix (BLOSUM n)
- Look only for differences in conserved, ungapped regions of a protein family
- More sensitive to structural or functional substitutions
- Contribution of sequences > n\% identical weighted to 1

Summary of substitutions matrices

- Triple-PAM strategy (Altschul, 1991)
- PAM 40 short alignments, highly similar
- PAM 120
- PAM 250 longer, weaker local alignments
- BLOSUM (Henikoff, 1993)
- BLOSUM 90 short alignments, highly similar
- BLOSUM 62 most effective in detecting known members of a protein family (Standard in BLAST)
- BLOSUM 30 longer, weaker local alignments
- No single matrix is the complete answer for all sequence comparisons

Sequence alignment

- Global alignment

Needleman-Wunsch algorithm

- Local alignment

Smith-Waterman algorithm

Global alignment: Needleman-Wunsch algorithm

- Construct a matrix $F(i, j)$ where i is index from sequence 1 and j is the index from sequence 2
- Starting with $F(0,0)=0$

Global sequence alignment

Example with S=BLOSUM50 and d=8

Time $O(n * m)$
Space $O\left(n^{*} m\right)$

HEAGAWGHE-E --P-AW-HEAE

Local alignment: Smith-Waterman algorithm

- Look for best alignments between subsequences
- E.g. two proteins sharing a common domain
- Algorithm is similar to global alignment

$$
\begin{aligned}
& F(0, j)=F(i, 0)=0 \\
& F(i, j)=\max \left\{\begin{array}{l}
0 \\
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i-1, j)-d \\
F(i, j-1)-d
\end{array}\right.
\end{aligned}
$$

Database search

- Database:

AI KWQPRSTW... I KMQRH I KW...
HDLFWHLWH...

- Query: RGIKW
- Output: sequences similar to query

How to answer the query

We could just scan the whole database

- But:
- Query must be very fast
- Most sequences will be completely unrelated to query
- Individual alignment needs not be perfect. Can finetune
- Exploit nature of the problem
- If you're going to reject any match with idperc < 90\%, then why bother even looking at sequences which don't have a fairly long stretch of matching a.a. in a row.

W-mer indexing

- Preprocessing:

For every W-mer (e.g., W=3) store every location in the database where it occurs (can use hashing if W is large)

- Query:
- Generate W-mers and look them up in the database.
- Process the results
- Running time benefit:
- For $\mathrm{W}=3$, if the sequences are "random", then roughly one W -mer in 23^{3} will match, i.e., one in a ten thousand
- We hit only a small fraction of all sequences

FASTA

- Use hash table of short words of the database (DB) sequence and query sequence (2-6 chars)
- For words in query sequence, find similar words in DB using (fast) hash table lookup, and compute
$R=$ position(query) - position (DB).
Areas of long match will show same R for many words.
- Score matching segments based on content of these matches. Extend the good matches empirically.

BLAST

- Finds inexact, ungapped "seeds" using a hashing technique (like FASTA) and then extends the seed to maximum length possible.
- Based on strong statistical/significance framework "What is a significantly high score of two segments of length N and M ?"
- Most commonly used for fast searches and alignments. New versions now do gapped segments.

Stephen Altschul
Samuel Karlin

High-scoring segment pairs

High-scoring Segment Pair (HSP)

High-scoring segment pairs

- Receive query
- Split query into overlapping words of length W
- Find neighborhood words for each word until threshold T
- Look into the table where these neighbor words occur: seeds
- Extend seeds until score drops off under X

- Evaluate statistical significance of score
- Report scores and alignments

Significance of scores

The number of unrelated matches with score greater than S is approximately Poisson distributed with mean

$$
E(S)=K m n e^{-\lambda S}
$$

where λ is a scaling factor m and n are the length of the sequences
The probability that there is a match of score greater than S follows a extreme value distribution:

[^0]| NCBI Blast | | |
| :--- | :--- | :--- |
| Program | Query sequence | Subject sequence |
| BLASTN | Nucleotide | Nucleotide |
| BLASTP | Protein | Protein |
| BLASTX | Nucleotide
 six-frame translation | Protein |
| TBLASTN | Protein | Nucleotide
 six-frame translation |
| TBLASTX | Nucleotide
 six-frame translation | Nucleotide
 six-frame translation |
| | | |

Multiple sequence alignment

Multiple sequence alignment

Often simple extension of pairwise alignment:

- Given:
- Set of sequences
- Match matrix
- Gap penalties
- Find:
- Alignment of sequences such that optimal score is achieved.

Goals of multiple sequence alignment

- Determine Consensus Sequences
- Prosite, eMOTIF
- ClustalW, MACAW, Pileup, T-Coffee
- Building Gene Families
- Blocks, Prints, ProDom, pFAM, DOMO, eBLOCKs
- Develop Relationships \& Phylogenies
- Clusters
- Relationships
- Evolutionary Models
- Phylip, GrowTree, MACAW, PAUP
- Model Protein Structures for Threading and Fold Prediction
- Profiles, Templates, HSSP, FSSP
- Hidden Markov Models, pFAM, SAM
- Network Models, Neural Nets, Belief Nets
- Statistical Models, Generalized Linear Models

Exhaustive search using dynamic programming

Why not just use same technique as for pairwise alignment?

- Instead of 2-dimensional SCORE matrix, use N dimensional. Fill from one corner to diagonal corner in N dimensions.
- Complexity increases with number of sequences O(MN), so only $N<10$ and lengths (M) 200 can be accommodated.

MSA Algorithm

Based on dynamic programming concept:

1. Compute optimal pairwise alignments to get upperbound on any pair of alignments. (MA can't do any better than sum of optimal pairwise alignments.)
2. Create heuristic multiple alignment in ad hoc fashion to create lowerbound on MA score (e.g. align all sequences to the first).
3. Search \mathbf{N}-dimensional scoring matrix (as in pairwise case) for optimal path, where $\mathrm{S}[\mathrm{i}, \mathrm{j}, \mathrm{k} . .$.$] is the best score$ including ith element of sequence 1 , jth of sequence 2 , kth of sequence 3 , etc...

Profile Construction

$$
\operatorname{PSSM}(p, a)=\sum_{b=1}^{20} f(p, b) * s(a, b)
$$

$f(p, b)=$ frequency of amino acid b in position p $s(a, b)$ is the score of (a, b) (from, e.g., BLOSUM or PAM)

PSI-BLAST

- Position-Specific Iterated BLAST search
- Used to identify distantly related sequences that are possibly missed during a standard BLAST search
- Easy-to-use version of a profile-based search
- Perform BLAST search against protein database
- Use results to calculate a position-specific scoring matrix
- PSSM replaces query for next round of searches
- May be iterated until no new significant alignments are found

Altschul et al., Nucleic Acids Res. 25: 3389-3402, 1997

Profile Hidden Markov Model

- Allows position dependent gap penalties
- Can be obtained from a multiple alignment (DNA or Protein)
- Can be used for searching a database for other members of the family

ProtParam

- Computes physicochemical parameters
- Molecular weight
- Theoretical pl
- Amino acid composition
- Extinction coefficient
http://web.expasy.org/protparam

Alpha-helix

- Corkscrew
- Main chain forms backbone, side chains project out
- Hydrogen bonds between CO group at n and NH group at $\mathrm{n}+4$
- Helix-formers: Ala, Glu, Leu, Met
- Helix-breaker: Pro

Beta-strand

- Extended structure ("pleated")
- Peptide bonds point in opposite directions
- Side chains point in opposite directions
- No hydrogen bonding within strand

Beta-sheet

- Stabilization through hydrogen bonding
- Parallel or antiparallel
- Variant: beta-turn

Neuronal network for secondary structure prediction

Protein secondary structure prediction (Jpred)

SignalP

- Neural network trained based on phylogeny
- Gram-negative prokaryotic
- Gram-positive prokaryotic
- Eukaryotic
- Predicts secretory signal peptides
- http://www.cbs.dtu.dk/services/SignalP/

PredictProtein

- Multi-step predictive algorithm (Rost et al., 1994)
- Protein sequence queried against SWISS-PROT
- MaxHom used to generate iterative, profile-based multiple sequence alignment (Sander and Schneider,1991)
- Multiple alignment fed into neural network (PHDsec)
- Accuracy: Average $>70 \%$, Best-case $>90 \%$
- http://www.predictprotein.org/

Regulatory sequences

- Transcription factor binding sites

Experimental methods
Computational methods
Matrix based methods
Motif discovery

- MicroRNA target prediction

Transcription factor binding sites

Experimental methods

- Reporter gene assays (luciferase)
- Electro mobility shift assays (EMSA)
- DNase I and Exonulease Footprinting
- SELEX
- Chromatin immuno precipitation (ChIP)

Electromobility/Gel Shift Assays

SELEX

Systematic evolution of ligands by exponential enrichment

Most position weight matrices (PWMs) in the databases are derived by SELEX

Computational methods

- Problem: sequences are short (e.g. 6-10 bp) and degenerated, many false positives
- Matrix based methods (knowledge about TF)

Position weight matrix (PWM), HMM

- Motif discovery

Word counting, EM

- MicroRNA target prediction

Gene	Organism	5'-3' Sequence			Ref
CYP4A6/P450 IV	rabbit	AACT A	AGGGCA	A AGTTGA	[1]
CYP4A1/P450 IV	rat	AACT A	AGGGTA	A AGTTCA	[2]
L-fatty acid binding protein	rat	ATAT A	AGGCCA	T AGGTCA*	[3]
3-hydroxy-3-methyl-glutaryl-CoA-synthase	rat	AACT G	GGGCCA	A AGGTCT*	[4]
Enoyl-CoA-hydratase	rat	ATGT A	AGGTAA	T AGTTCA*	[1]
Malic enzyme	rat	TTCT	GGGTCA	A AGTTGA	[5]
Phosphoenolpyruvate carboxikinase	rat	AACT	GGGATA	A AGGTCT	[6]
Phosphoenolpyruvate carboxikinase)	rat	CCCA	CGGCCA	A AGGTCA*	[6]

| Uncoupling protein 1 | mouse | AGTG | TGGTCA | A | GGGTGA* | $[12]$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Apolopoprotein C-III | human | GCGC | TGGGCA | A | AGGTCA* | $[1]$ |
| Acyl-CoA oxidase | human | TAGA | AGGTCA | G | CTGTCA | $[13]$ |
| Lipoprotein lipase | human | GTCT | GCCCTT | T | CCCCCT* | $[14]$ |
| Muscle type carnitine palmitoyltransferase I | human | CCTT | TTCCCT | A | CATTTG | $[15]$ |
| Consensus | | AWCT | AGGNCA A AGGTCA | $[16]$ | | |

Position frequency matrix

- Position frequency matrix

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	10	8	4	3	11	0	1	1	2	19	15	17	2	0	0	0	16
C	3	4	11	5	1	1	2	6	15	0	1	4	1	1	2	17	2
G	3	2	4	2	7	20	19	6	1	1	2	1	17	15	1	4	1
T	6	8	3	12	3	1	0	7	4	2	4	0	2	6	19	1	3

- Position weight matrix (PWM), position specific scoring matrix (PSSM)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	0.86	0.54	-0.46	-0.87	1.00	-1.32	-2.46	-2.32	-1.46	1.79	1.45	1.63	-1.46	-1.32	-1.32	-1.32	1.54
C	-0.87	-0.46	1.00	-0.14	-2.46	-2.46	-1.46	0.26	1.45	-1.32	-2.46	-0.46	-2.46	-2.46	-1.46	1.63	-1.46
G	-0.87	-1.46	-0.46	-1.46	0.35	1.86	1.79	0.26	-2.46	-2.46	-1.46	-2.46	1.63	1.45	-2.46	-0.46	-2.46
T	0.13	0.54	-0.87	1.13	-0.87	-2.46	-1.32	0.49	-0.46	-1.46	-0.46	-1.32	-1.46	0.13	1.79	-2.46	-0.87

Position weight matrix (PWM)

Probability of base b at position i

PWM

$$
W_{b, i}=\log _{2} \frac{p(b, i)}{p(b)} \quad p(b) \ldots \quad \begin{aligned}
& \text { background probability } \\
& \text { of base } b
\end{aligned}
$$

Evaluation of sequences

$S=\sum_{i=1}^{w} W_{b, i} \quad$| w | \ldots | width of PWM |
| :--- | :--- | :--- |
| b | \ldots | nucleotide in position i |
| S | \ldots | PWM score of a sequence |

	1	2	3	4	5	6
A	1.00	-1.32	-2.46	-2.32	-1.46	1.79
C	-2.46	-2.46	-1.46	0.26	1.45	-1.32
G	0.35	1.86	1.79	0.26	-2.46	-2.46
T	-0.87	-2.46	-1.32	0.49	-0.46	-1.46

...ACGTAGGTCATAGAGTA.. $\quad S=1+1.86+1.79+0.49+1.45+1.79=8.38$
\ldots..ACGTAGGTCATAGAGTA.. $\quad S=-0.87-2.46-2.46+0.49-1.46-2.46=-9.22$

Optimized similarity score to minimize false predictions

Information content in position i

$$
D_{i}=2+\sum_{b} p(b, i) \log _{2} p(b, i)-e(n)
$$

e(n) ... correction factor if only few samples n
D_{i}... information content at position i
b ... base A,C,G, or, T

All bases with equal probabilities at position i
$D_{i}=2+4 * 0.25 * \log _{2} 0.25=0$ bits
Only one base is present at position i
$D_{i}=2+1 * \log _{2} 1+3 * 0.001 * \log _{2} 0.001=1.97$ bits
from pseudocounts $\left(\log _{2} 0\right.$ is not defined!!)

Phylogenetic footprinting

- Functional regulatory sites are conserved between species

- Multiz alignment of UCSC genome browser

Phylogenetic footprinting

Expectation maximum

- Problem: Don't know what the motif looks like or where the starting positions are

\rightarrow Use expectation maximum (EM)
- EM is a family of algorithms for learning probabilistic models in problems that involve hidden state
- In our problem, the hidden state is where the motif starts in each training sequence

Basic EM-approach

p

A motif is represented by a matrix of probabilities: P_{ck} represents the probability of character c in column k

Z

The element Z_{ij} of the matrix Z represents the probability that the motif starts in position j in sequence i.

- The basic EM approach has been enhanced by MEME (ChIP-MEME)

MicroRNA target prediction

Principles of microRNA target prediction

1. Sequence complementarity
2. Conservation
3. Thermodynamics
4. Site accessibility
5. UTR Context
6. Anticorrelation of expression profiles

Thermodynamics

1. Minimum free energy

2. Account for different sequence length
3. Extreme value distribution of MFE

III Gene expression analyses

- Microarrays
- RNA sequencing
- Gene expression profiling
- Clustering and classification
- Gene ontology

Gene expression analyes

- Northern bloting
- semi-quantitative
- few genes
- Real time RT-PCR (qPCR)
- medium throughput
- 96/384 per run
- Microarray analysis
- high throughput
- 10.000-500.000 elements per chip
- RNA seq
- high throughput
- deep sequencing (short reads 25 bp)

Processing of Affymetrix chips

Robust Microarray Averaging (R/Bioconductor pkg. RMA)

- Background modeling (PM vs. MM)
- Quantile normalization across all arrays

- Probe summarization (median polish)
- Log2-transformation (log2-intensities)

Differential\|y expressed genes													
	ID	GENE	KO1	KO2	KO3	WT1	WT2	WT3	logFC	AveExpr	t	P.Value	adj.P.Val
	10386473	Srebf1	5.72	5.58	6.06	4.91	4.88	5.09	0.83	5.33	7.66	3.7E-09	4.6E-05
	10463355	Scd2	6.63	6.26	6.92	5.13	4.77	5.01	1.64	5.59	7.52	5.6E-09	$4.6 \mathrm{E}-05$
	10548105	Cond2	5.56	5.48	5.49	5.05	5.11	5.02	0.45	5.23	5.21	7.3E-06	$3.9 \mathrm{E}-02$
	10587284	Elovl5	5.81	5.67	5.97	5.05	5.06	5.35	0.66	5.44	4.87	$2.1 \mathrm{E}-05$	$8.4 \mathrm{E}-02$
	10540122	Slc6a6	7.27	7.16	7.35	6.75	6.81	6.71	0.50	7.04	4.80	$2.6 \mathrm{E}-05$	$8.5 \mathrm{E}-02$
	10605437	Pls3	5.50	5.63	5.41	4.88	4.93	4.87	0.62	5.20	4.63	$4.3 \mathrm{E}-05$	$9.7 \mathrm{E}-02$
	10543791	Podxl	7.30	7.03	7.08	6.31	6.52	6.33	0.75	6.59	4.61	$4.6 \mathrm{E}-05$	$9.7 \mathrm{E}-02$
	10356084	Irs1	8.30	8.76	7.61	6.62	7.33	7.19	1.18	7.60	4.57	$5.2 \mathrm{E}-05$	$9.7 \mathrm{E}-02$
	10346164	Sdpr	5.68	5.37	5.43	5.00	5.03	4.95	0.50	5.17	4.54	5.7E-05	$9.7 \mathrm{E}-02$
	10387625	Chrnb1	6.31	6.08	6.06	5.73	5.59	5.81	0.44	6.01	4.52	$6.0 \mathrm{E}-05$	$9.7 \mathrm{E}-02$
	10407390	Ptbp1	4.84	5.26	5.07	4.22	3.98	4.64	0.77	4.88	4.43	$8.0 \mathrm{E}-05$	$1.1 \mathrm{E}-01$
	10507539	Elovl1	5.08	4.58	4.89	4.33	4.34	4.55	0.44	4.61	4.40	8.7E-05	$1.1 \mathrm{E}-01$
	10585988	Муо9a	4.05	4.00	4.01	3.50	3.64	3.79	0.38	3.93	4.39	$9.1 \mathrm{E}-05$	$1.1 \mathrm{E}-01$
	10371959	Elk3	5.94	5.85	5.78	5.28	5.44	5.46	0.47	5.66	4.38	$9.3 \mathrm{E}-05$	1.1E-01
		con	ditio	on K	O vs	CO	ndit	tion	WT				

Differentially expressed genes

Moderated t-test ($\mathrm{R} / \mathrm{Bioconductor} \mathrm{package} \mathrm{limma)}$

$$
t=\frac{\bar{M}}{(a+s) / \sqrt{n}} \quad \Rightarrow \text { p-value }
$$

estimated from all genes

- At a significance level of 0.05 in the case of 10000 tests 500 might be wrong.
- Account for this by correction for multiple hypothesis testing
- Bonferroni correction (multiply p with number of tests)
- Benjamini-Hochberg correction (based on the FDR)
- adjusted p-value<0.05 (<0.1) significantly differentially expressed

Methods to correct p -values for multiple testing

smallest $p \longrightarrow$	Ranked p	Bonferroni	Benjamini-Hochberg (FDR)
	$\mathrm{p}_{(1)}$	$\mathrm{p}_{(1)}{ }^{*} \mathrm{n}$	$\mathrm{p}_{(1)}{ }^{*} \mathrm{n}$
	$\mathrm{p}_{(2)}$	$\mathrm{p}_{(2)} * \mathrm{n}$	$\mathrm{p}_{(2)} * \mathrm{n} / 2$

	$\mathrm{p}_{(\mathrm{i})}$	$\mathrm{p}_{(\mathrm{i})} * \mathrm{n}$	$\mathrm{p}_{(\mathrm{i})}{ }^{*} / \mathrm{i}$

	$p_{(n-1)}$	$\mathrm{p}_{(\mathrm{n}-1)}{ }^{\text {n }}$	$p_{(n-1)} * n /(n-1)$
largest $\mathrm{p} \longrightarrow$	$p_{(n)}$	$\mathrm{p}_{(\mathrm{n})} * n$	$\mathrm{p}_{(\mathrm{n})}$

$$
p_{(i)}^{\mathrm{BH}}=\min \left\{\min _{j \geq i}\left\{p_{(i)}{ }^{*} n / j\right\}, 1\right\}
$$

Deep (next generation) sequencing technologies

- Sanger (Thermo Fisher Scientific)
$1^{\text {st }}$ gen.
- 454 (Roche)
- Solexa (Illumina)
- Solid (Thermo Fisher Scientific)
- Ion Torrent (Thermo Fisher Scientific)
(ampl)
- HeliScope (Helicos)
- Pacific Biosciences SMRT
- Oxford Nanopore Sequencing (MinION)
$3^{\text {rd }}$ gen.
(no ampl)

Base calling (Phred score)

Base-calling error probabilities: P

	Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%	
20	1 in 100	99%	
30	1 in 1000	99.9%	
40	1 in 10,000	99.99%	
50	1 in 100,000	99.999%	
	60	1 in $1,000,000$	99.9999%

Quality of
Sequencing (FASTQC)

Base calling (FastQ format)

```
Definition:
    <fastq> := <block>+
            <block> := @<seqname> \n <seq> \n l+<seqname>? In <qual> In
        <seqname> := [A-Za-z0-9_::]+
            <seq> := [A-Za-z\n\.~]+
            <qual> := [!-~\n]+
@EAS54_6_R1_2_1_413_324
CCCTTCTTGTCTTCAGCGTTTCTCC
+
;;3;;;;;;;;;;;;7;;;;;;;88
```

Quality scores are encoded in ASCII


```
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
.
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
```



```
33
- Sanger Phred+33, raw reads typically (0, 40)
- Solexa Solexa+64, raw reads typically (-5, 40)
- Illumina 1.3+ Phred+64, raw reads typically (0, 40)
- Illumina 1.5+ Phred+64, raw reads typically (3, 40)
with \(0=\) unused, \(1=u n u s e d, 2=\) Read segment Quality Control Indicator (bold)
(Note: See discussion above)
- Illumina 1.8+ Phred+33, raw reads typically ( 0,41 )
```


Analysis steps

0. Image analysis and base calling (Phred quality score)
=> FastQ files (sequence and corresponding quality levels)
1. Trimming adaptors and low quality reads (FastQC, Trimmomatic)
2. Read mapping (Spliced alignment) (STAR)
=> SAM/BAM files
3. Transcriptome reconstruction (reference transcriptome, GTF file)
4. Expression quantification (transcript isoforms) (featureCounts)
=> raw count matrix
5. Differential expression analysis (negative-binomial test)
(DESeq, edgeR)
=> List of genes with $\log 2 F C, p$-value, FDR, average expression
6. Normalization

Normalization

Within-samples

- Reads per kilobase per million reads (RPKM)
- Fragments per kilobase per million (FPKM) for paired-end seq.

- TPM (transcripts per million) (preferable)

Between-samples

- Quantile normalization (upper quantile normalization)
- TMM (trimmed mean of M values) (edgeR)
- Relative log expression (RLE) (DESeq2)

RPKM (FPKM)					TPM				
	GENE	S1	S2	S3	GENE	S1	S2	S3	
	A (2kb)	10	12	30	A (2kb)	10	12	30	
	B (4kb)	20	25	60	B (4kb)	20	25	60	
	C (1kb)	5	8	15	C (1kb)	5	8	15	
	D (10kb)	0	0	1	D (10kb)	0	0	1	
	Tens(Mio)	3.5	4.5	10.6	1. Divide by gene length in kb				
RPM	1. Divide by millions of reads				A (2kb)	5	6	15	RPK
	A (2kb)	2.86	2.61	2.83	B (4kb)	5	6.25	15	
	B (4kb)	5.71	5.43	5.66	C (1kb)	5	8	15	
	C (1kb)	1.43	1.96	1.42	D (10kb)	0	0	0.1	
	D (10kb)	0.00	0.00	0.09	Tens(Mio)	1.5	2.025	4.51	
RPKM	2. Divide by gene length in kb				2. Divide by millions of RPK				TPM
	A (2kb)	1.43	1.30	1.42	A (2kb)	3.33	2.96	3.326	
	B (3kb)	1.43	1.36	1.42	B (3kb)	3.33	3.09	3.326	
	C (1kb)	1.43	1.96	1.42	C (1kb)	3.33	3.95	3.326	
	D (10kb)	0.00	0.00	0.01	D (10kb)	0	0	0.02	

Clustering
- Unsupervized clustering
- Hierarchichal Clustering
- K-Means Clustering
- Principal Component Analysis (PCA)
- Supervized clustering (Classification)
- Support vector machines (SVM)
- Logistic regression
- Cross validation

Clustering

- Agglomerative

Bottom up approach, whereby single expression profiles are successively joined to form nodes.

- Divisive

Top down approach, each cluster is successively split in the same fashion, until each cluster consists of one single profile.

Similarity (distance) between expression profiles

- Pearson correlation

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

$$
-1 \leq r \leq 1
$$

- Euclidian distance

$$
d_{E}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

- Manhattan distance

$$
d_{M}=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|\right)
$$

Hierarchical clustering

- Agglomerative (bottom up), unsupervized
- Cluster genes or samples (or both= biclustering)
- Distances are encoded in dendogram (tree)
- Cut tree to get clusters

6 cluster

- Pearson correlation (usually used)
- Computational intensive (correlation matrix)

1. Identify clusters (items) with closest distance
2. Join to new clusters
3. Compute distance between clusters (items) (see linkage)
4. Return to step 1

Linkage

- Single-linkage clustering
Minimal distance
- Complete-linkage clustering
Maximal distance
- Average-linkage clustering
Calculated using average distance (UPGMA)
Average from distances not! expression values
?

K-means

- partition n genes into k clusters, where k has to be predetermined
- k -means clustering minimizes the variability within and maximize between clusters
- Moderate memory and time consumption

1. Generate random points ("cluster centers") in n dimensions (results are depending on these seeds).
2.Compute distance of each data point to each of the cluster centers.
3.Assign each data point to the closest cluster center.
2. Compute new cluster center position as average of points assigned.
3. Loop to (2), stop when cluster centers do not move very much.

How to choose k

Figure of Merit (FOM)

choose k here (e.g. $\mathrm{k}=8$)

Principal Component Analysis (PCA)

Is it possible to represent each profile by overlay of few patterns?

Principal component analysis (PCA)

PCA is a data reduction technique that allows to simplify multidimensional data sets into smaller number of dimensions $(r<n)$.

Variables are summarized by a linear combination to the principal components. The origin of coordinate system is centered to the center of the data (mean centering) . The coordinate system is then rotated to a maximum of the variance in the first axis.

Subsequent principal components are orthogonal to the $1^{\text {st }} \mathrm{PC}$. With the first 2 PCs usually $80-90 \%$ of the variance can already be explained.

This analysis can be done by a special matrix decomposition (singular value decomposition SVD).

Singular value decomposition (SVD)

For mean centered data the Covariance matrix C can be calculated by $X X^{\top}$. U are eigenvectors of $X X^{\top}$ and the eigenvalues are in the diagonal of S defined by the characteristic equation $|C-\lambda| \mid=0$.

Transformation of the input vectors into the principal component space can be described by $Y=X U$ where the projection of sample i along the axis is defined by the j-th PC:

$$
y_{i j}=\sum_{t=1}^{m} x_{i t} u_{t j}
$$

Support vector machines (SVM)

A SVM tries to find an optimal hyperplane that separates all training samples correctly and maximizes the margin (maximizes the distance between it and the nearest data point of each class). If this is not possible in the input space (for example in 2 dimensions) a hyperplane can be found in the higher dimensional feature space (e.g. 3D-space)

Holdback cross validation

To avoid overfitting data should be splitted into training and test set

Gene Ontology

Gene Ontology (GO)

The Gene Ontology project (http://geneontology.org) provides a controlled vocabulary to describe gene and gene product attributes in any organism.

The three organizing principles (categories) of GO are mitochondrium

- cellular component
- biological process
cell cycle

- molecular function

What' s in a GO term?

- Term
transcription initiation
- ID

GO:0006352

- Definition

Processes involved in starting transcription, where transcription is the synthesis of RNA by RNA polymerases using a DNA template.

Gene Ontology Browser (Amigo2)

http://amigo2.geneontology.org (http://geneontology.org/)

Term information
Accession GO:0006629
Name lipid metabolic process
Ontology biological_process
Synonyms lipid metabolism
Inferred tree view

- GO:0008150 biological_process
a GO:0044699 single-organism process
E GO:0071704 organic substance metabolic process
I GO:0044238 primary metabolic process
- GO:0044710 single-organism metabolic proce
∇ GO:0006629 lipid metabolic process GO:0044255 cellular lipid metabolic process I GO:1900555 emericellamide metabolic process E GO:1902898 fatty acid methyl ester metabolic process E GO: 1903173 fatty alcohol metabolic process a GO.0008610 lipid blosynthetic proces a GO.0016042 ipid catabolic process .0.003533 nesalic. GO.0045834 positive reguation of lipid metabolic process © GO:0019216 regulation of lipid metabolic process - GO:0008202 steroid metabolic process

Annotation

Evidence code for GO annotations

ISS Inferred from Sequence Similarity
IEP Inferred from Expression Pattern
IMP Inferred from Mutant Phenotype
IGI Inferred from Genetic Interaction
IPI Inferred from Physical Interaction
IDA Inferred from Direct Assay
RCA Inferred from Reviewed Computational Analysis
TAS Traceable Author Statement
NAS Non-traceable Author Statement
IC Inferred by Curator
ND No biological Data available

Over representation analysis

- Fisher exact test for contingency table
- Hypergeometric distribution

- Multiple hypothesis testing => adjust p-value
- Not only for GO Terms also for TFBS, pathways,..

DAVID

- Database for Annotation, Visualization and Integrated Discovery
- https://david.ncifcrf.gov
- Functional annotation tool (over representation analysis)

1019 mouse gene symbols

```
\ DAVID Bioinformaticcs Resources 6.7
```

Functional Annotation Chart

Dnajb1
Wnt11
Sorbs3
D230025D16Rik
Sfxn3
Hspa5
Golga3
Hgs
Npc1
Mta2
Cnn2
Spg2O
Zpr1
\quad

[^0]: Karlin S, Altschul S. Proc Natl Acad Sci (1990)

