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Prokaryotes
Eukaryotes
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I  Transcriptional regulation

History
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History

• 1995
– Two bacterial genomes decoded (TIGR)

Mycoplasma genitalium (580.070 bp)
Haemophilus influenza (1,830.137 bp, 1.740 genes)

– First DNA microarray studies published

• 1996
– Saccharomyces cerevisiae (bakers yeast) decoded

(12,000.000 bp, 6.000 genes)

• 1998
– Caenorhabditis elegans (worm) genome decoded

(97,000.000bp, 19.000 genes)

• 2000
– Genome of Drosophila melanogaster (fruit fly)

(180,000.000bp, 14.000 genes)

Human genome project

2000
– Draft version of the human genome

(>10 years, >3 billion $ , 20 labs)       

2003
 completed (high quality reference sequence)

(3,000,000.000bp, 25.000 genes)

2007
– J Craig Venter genome sequence

– James Watson genome sequence
(2 months, 454 sequencing, 1 million $)

2012
– >150 eukaryotic genomes sequenced

 > 20 mammals
 Hundreds of sequenced bacteria

and viruses
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Neandertal genome sequence

• Department of Evolutionary Genetics, 
Max-Planck Institute for Evolutionary 
Anthropology

• Draft sequence 2010 (Science)  using
454 pyro-sequencing (Roche)

• Comparison with human and 
chimpanzee (e.g. speech-related gene 
FOXP2 with the same mutations as in 
human in contrast to chimp)

• Neanderthal admixture in modern 
human DNA?

Large scale genomics  projects

1000 Genomes Project (=> 100.000 genomes project)
 Study human genetic variation of >1.000 human genomes

Genome10k
 whole genome sequencing of 10.000 vertebrates

International Cancer Genome Consortium (ICGC) and The Cancer 
Genome Atlas (TCGA)

 To obtain a comprehensive description of genomic, transcriptomic and 
epigenomic changes in 50 different tumor types and/or subtypes.
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TCGA (The Cancer Genome Atlas)

https://tcga-data.nci.nih.gov

• Copy number
• Methylation
• Gene expression
• MicroRNA expression
• Somatic mutations
• Clinical data

Pan-Cancer Analysis of Whole Genomes Consortium 

Feb 2020

>2600 whole cancer genomes
38 tumor types
750 affiliations
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Johnson et al. Cell 2020

ENCODE (Encyclopedia of DNA Elements)

32 institutes
442 consortium members
1640 data sets
30 papers (Sept 2012)

http://www.nature.com/encode
http://genome.ucsc.edu/ENCODE/
http://www.genome.gov/10005107

The vast majority (80.4%) of the human genome participates in at
least one biochemical RNA- and/or chromatin-associated event in at
least one cell type.
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Cost per genome

DNA
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DNA

Symbol Meaning Description

R A or G puRine
Y C or T pYrimidine
W A or T Weak hydrogen bonds
S G or C Strong hydrogen bonds
M A or C aMino groups
K G or T Keto groups
H A, C, or T (U) not G, (H follows G)
B G, C, or T (U) not A, (B follows A)
V G, A, or C not T (U), (V follows U)
D G, A, or T (U) not C, (D follows C)
N G, A, C or T (U) aNy nucleotide

Nomenclature of nucleic acids

Base Symbol Occurrence

Adenin A DNA, RNA
Guanin G DNA, RNA
Cytosin C DNA, RNA
Thymin T DNA
Uracil U RNA
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+ strand 5´-ACGGTCGCTGTCGGTAGC-3´
- strand 3´-TGCCAGCGACAGCCATCG-5´

e.g. in fasta format : >gene sequence|gi12345|chr17|-
GCTACCGACAGCGACCGT

DNA sequences are always from 5‘ to 3‘

Positions in the genome (genome assembly) are chromosome wise

e.g. human GRCh37/hg19

chr11:1-100      chr11:49,686,777-49,689,777

Positions in the chromosome start for both!! strands from position 1

+ strand 5´-ACGGTCGCTG…………TCGGTAGC-3´
- strand 3´-TGCCAGCGAC…………AGCCATCG-5´

chr11:1                             2523        2529

chr11:1                              2523        2529

Nomenclature

We have the genome sequence, so do we know everything? 

No

The genome (transcriptome) is dynamic, the activity of the 
genes is changing over time and according to the environment 
or signals.

How is this regulated?

Gene regulation in prokaryotes
Gene regulation in eukaryotes
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Gene regulation in prokaryotes

Prokaryotic transcriptional regulation

1. Lead to rapid increases and decreases in the expression of 
genes in response to environmental stimuli

 Plasticity to respond to ever changing environment

2. Those that involve pre-programmed or cascades of gene 
expression

 Set A → Set B → Set C……
 Usually expressed in order



11

Response to environmental stimuli

 Gene expression (protein production) energetically
expensive

 Extensive and sophisticated systems to regulate gene 
expression to conserve precious metabolic energy

 Transcriptional regulation has largest effect on phenotype

Example lack of glucose but abundance of lactose

 Turn on or induce expression of Lactose catabolism genes
 Induces transcription of gene for lactose utilization
 Catabolic (degradative) pathways often are inducible
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Prokaryotic transcriptional regulation

 If lactose is not present (resting state)  repressor binding to promoter
prevents binding of polymerase => no mRNA expression

 If lactose is present repressor is inactivated by
conformational changes => mRNA expression of structural genes

promoter operator

• lac operon as example for inducible system (E. coli) 
regulatory

gene

Prokaryotic transcriptional regulation

• Glucose and the lac operon

 Lactose is metabolised into 
glucose so what happens if 
glucose is present.

 Catabolite-activation 
protein (CAP): CAP must be 
present to make RNA 
polymerase binding 
efficiently

 In the presence of glucose  the CAP is altered and prevents RNA 
polymerase binding to the promoter region and so prevents transcription. 
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Response to environmental stimuli

• Example tryptophan (essential amino acid)
 E.coli can synthesize most molecules needed to growth

(Amino acids, purines, pyrimidines, and vitamins)
 When Trp is present in the environment biosynthesis should be   

turned off
 Anabolic (biosynthetic) pathways often are repressible

Prokaryotic transcriptional regulation

 If tryptophan is present the repressor-tryptophan complex binds to
operator => no mRNA expression of structural genes.

 Translation and transcription are coupled (regulation by leader sequence
and attenuation)

• trp operon as an example for a repressible system

attenuator regionleader region
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Translational Control of Gene Expression

 Prokaryotes regulate at Transcription
 Translational control used for fine tuning
 Transcription, Translation, mRNA degradation are coupled
 Three general mechanisms

1. Unequal efficiencies of translational initiation
2. Altered efficiencies of ribosome movement
3. Differential rates of mRNA degradation

Gene regulation in eukaryotes
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Gene expression in eukaryotes

mRNA processing
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U2 U2AF
GU YAGA

YAG

U1

U4 U6

U5U2
A

Spliceosome assembly

+ ~200 non-snRNP
proteins

U4

U1

hnRNP

SR proteins

RNA helicases

kinases and phosphatases

Cyclophilins

U4 U6

U5

U2
U6

U5

YAGA

U1

Alternative splicing

 Dependent on RNA/Spliceosome interaction
 Economizes on genetic information
 Create numerous related yet different proteins
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Translation, genetic code and reading frames

Peptid chain, amino acid sequence, proteins

Protein sequences are always form N-terminal end to C-terminal end 

backbone

sidechains

E.g.. SCD sequence in fasta format
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Different levels of regulation

Transcriptional regulation has largest effect on phenotype!

Regulation of eukaryotic transcription
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Basal transcription factors

Cis elements: sequences on DNA that affects the level of transcription.

Trans elements: DNA-binding proteins that change the level of 
transcription by basal transcription machinery.

• Promoter (proximal regulation elements)
Region that is located immediately upstream of a protein-coding gene 
and binds to RNA polymerase II; where transcription is initiated; (TATA 
box) (H3K4me3)

•  LCR (locus control region)
Super-enhancer sequences in eukaryotic cells that control the 
expression of distant gene families (e.g. beta-globin)

•  Enhancers (distal regulation elements)
Eukaryotic DNA sequences that are necessary to  activate gene 

transcription (p300, H3K4me1)

•  Insulators
Separates active from inactive chromatin domains and interferes 

with enhancer activity when placed between an enhancer and a 
promoter (CTCF)

• Repressor/silencer
Negative regulators of gene expression (REST,SUZ12)

Cis-regulatory elements of transcription
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Locus Control Regions (LCR)

 Example β-globin locus (5 genes in human) 

HS.. DNAse1 hypersensitive sites

LCR

Li et al. Blood 2002

 strong, transcription-enhancing activity
 establishment and maintenance of an open 

chromatin domain

 Temporal regulation of hemoglobin (tetramer 2xα +2xβ)

Transcriptional synergy
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Eukaryotic gene repressors

Transcription factor combinations
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Classification of TF by DNA binding

• hetero dimerization

• homo dimerization

Transcription factor dimerization

Leucine zippers
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Signaling

Induction of transcription by environmental factors are less
common in eukaryotes

Intercellular communication mediated by hormones
• Steroid Hormones

 cholesterol derivatives
 Easy pass through cell membrane
 Ex. Estrogen, progesterone, testosterone, glucocorticoids, ecdysone

• Peptide Hormones
 Peptides
Don’t pass through membrane
 Ex. Insulin, growth hormone, prolactin

• Other non-hormone proteins
Nerve growth factor
 Epidermal growth factor

Classification of TF by function

Brivanlou AH, Darnell Jr JE. Science. 295: 813-818 (2002) 
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Regulation by phosphorylation

Principles of TF regulation

• 1 TF can target promoter of many genes

• >1 TF regulate expression of 1 gene (modules)

• Cascade of TF possible

• Positive feedback loop (autoregulation)

• Feed forward loop
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Chromosomes

DNA packing



26

The solenoid model of condensed chromatin

Activators: histone acetylation
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Repressors: histone deacetylation

methylationacetylation

unknownphosphorylation

Histone modification and histone code

Strahl BD, Allis CD. Nature 2000. 403:41-45
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Chromatin states

Ernst et al. Nature 2011. 

DNA methylation

Cytosine                 5-Methylcytosine 
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• Once differential expression patterns have been set up 
epigenetic mechanisms can ensure that differential 
expression patterns are stably inherited when cells divide

• Methylation does not alter base pairing

• 3% of cytosines in human DNA are methylated

• ~76% - 100% of cytosines in CpG islands are methylated

• DNA methyltransferases (DNMT1, DNMT3A, DNMT3b), 
for maintenance and de novo methylation of DNA

• CpG methylation is regulated tightly during development 
and is associated with gene silencing, X-inactivation, and 
allele specific

DNA methylation

Aberrant methylation patterns
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AACTAGGTCAAAGGTCA

A/B      A/B

E/F      E/F

C         C

PPRE

PPAR  RXR

Cofactors

HAT

PPRE

Ligands

Phosphorylation

g2        A/B          C            D                       E/F

DNA BD       Hinge           Ligand binding domain

1        30                     138           203                 279                                                   505

Ligand-independent 
activation function

mPPARg2

Nuclear receptors

Timothy P. O'Brien et al. 
Genome Res. 2003. 13: 1029-1041

Functional compartmentalization of the nucleus

Iborra et al. 
J Cell Sci 1996

Transcription factories

Pol II

Compartments
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RNA binding proteins for mRNA stability 

HuR

AU rich elements (ARE)

He L., Hannon GJ. Nature Reviews Genetics. 2004. 5:522-531

microRNA and siRNA
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miRNA-mRNA targeting

Conservation of microRNA target sequences
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Genome analyses

Human Genome

2.95 Gbases of 3.2 Gbases is euchromatin

– >90% of euchromatin sequenced

– ~1% of sequence encodes protein sequences

23,000 genes

– Small # considering:

• Yeast - 6,000 genes

• Drosophila - 13,000 genes

• C. elegans - 19,000 genes

• A. thaliana - 26,000 genes
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Organization of the human genome

> 1 mio. copies of Alu-repeats

1-6b (5-50x)
~6kb

~75-500 bp

Transposons

Deniz et al. Nat Rev Genet. 2019
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 Gene finding
 Start codon
 Exon-intron borders
 CpG-islands
 Repetitive sequences (Repeat Masker)
 Regulatory sequences

Bioinformatics challenges in genome analysis

Solution: Hidden Markov Models (HMM)

Markov chains

Markov chains: a sequence of events that occur one after 
another. The main restriction on a Markov chain is that the 
probability assigned to an event at any location in the chain 
can depend on only a fixed number of previous events.

Scoring sequences (e.g. start codon ATG)
3 states (S1, S2, S3),  p(A)=p(C)=p(G)=p(T)=0.25

A T G

p(A)=0.91
p(C)=0.03
p(G)=0.03
p(T)=0.03

p(A)=0.03
p(C)=0.03
p(G)=0.03
p(T)=0.91

p(A)=0.03
p(C)=0.03
p(G)=0.91
p(T)=0.03

Markov chain 0th order
p(ATG)=0.913=0.752

Markov chain 1th order
p(ATG)=p(A)*p(T|A)*p(G|T)

S1 S2 S3
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Hidden Markov Model (HMM)

- Example exon-intron border
- 3 states:  exon(E), 5‘SS (5), intron (I)

Eddy SR, Nat Biotech 2004

Emission probabilities

Hidden, want to infer(π)
(hidden Markov chain)

Given (S)

log P(S,π|HMM,Θ)=log(1*0.2518*0.917*0.1*0.95*1.0*0.4*0.9*0.4*0.9*0.4*0.9*0.1*0.9*0.4*0.9*0.1*0.9*0.4*0.1)

Find best state path
(highest score)

G T           A          A G          T           C          A                      

HMM parameters (Θ)

Profile Hidden Markov Model

ACA---ATG
TCAACTATC
ACAC--AGC
AGA---ATC
ACCG--ATC

P(A)=0.8
P(C)=0.0
P(G)=0.0
P(T)=0.2

P(A)=0.8
P(C)=0.2
P(G)=0.0
P(T)=0.0

P(A)=1.0
P(C)=0.0
P(G)=0.0
P(T)=0.0

P(A)=0.0
P(C)=0.0
P(G)=0.2
P(T)=0.8

P(A)=0.0
P(C)=0.8
P(G)=0.2
P(T)=0.0

P(A)=0.0
P(C)=0.8
P(G)=0.2
P(T)=0.0

P(A)=0.2
P(C)=0.4
P(G)=0.2
P(T)=0.2

1.0

0.4

1.0 0.4

0.6

0.6

1.0 1.01.0

[AT][CG][AC][ACGT]*A[TG][GC]

Regular Expressions

p(ACACATC)=0.8*1*0.8*1*0.8*0.6 *0.4*0.6*1*1*0.8*1*0.8=0.047
log-odds=log(p(S)/0.25L)=log(0.047/0.257)

insertion state

- For multiple alignments (e.g. DNA sequences)
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 Mapping algorithms for NGS data

 Sequence alignment of 2 sequences

 Multiple sequence alignment

 Predictive models using protein sequences

 Regulatory sequences

II Biological sequence analyses

Mapping algorithms for NGS data
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Next generation sequencing (NGS)

DNA

RNA

RT

cDNA

1. Fragmentation
2. Adapter ligation
3. Amplification (PCR)

Library Generation

AC..GT

Adapter trimming
Quality filtering

Sequence, Quality measures

FASTQ file

TG..GAGCCTACGAC…GGTCCAT

AC..GT TG..GAAGCTGCAAC…GATGCAA

AC..GT TG..GACCCCACCAC…GGGCCAT

AC..GT TG..GATCATACGAC…GGGTCAT

Extraction

AdapterAdapter

Mio. reads

Read alignment

RNAseqDNAseq

Sequences, Mutations Normalization, Quantification

Read alignment (mapping)

Reference genome

Mapped reads

Point mutations, indels
Introns

Mio. reads

Sequencing errors

Reference genome
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Exact string matching

10 mio. short sequence reads (100 bp)

Reference genome (hg38) (3*109 bp) Chr1
Chr2 ….

String matching problem in text processing

O[(n-m+1)*m]

s=107 m=102 n=3*109               107*(3*109-99)*102= max. 3*1018 comparisons

1 Naïve approach

Problem

…

O E I E V S L IR M P S U I AML L V D L RO O S I TE A

E V S L II AL V E

E V S L II AL V E

E V S L II AL V E

E V S L II AL V E

V S L II AL V E

E V IL…
E

S

1 n

1 m

T

P

Desktop PC: 1012 floating point operations/s

0 0 0 010 04200

Z-box algorithm

Z(k)= longest substring starting at k which is also prefix of the string

T A A A A A A A AT T T T T T TGG C

A A A A A A AT T T T T TG C TP

T

A A A A A A A AT T T T T T TG C TG$PS

Z 3 1 20 0

l=m+2 r=m+6

l=m+4

Z(m+4)=m

r=m+n+1

m+n0 mm+1

Z(m+1)=0

Z(m+2)=4

- There are a number of improvements and other string matching
algorithms such as Boyer-Moore or Knutt-Morris-Pratt

O[n+m]

1 n

1 m

Exact string matching algorithms
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Suffix tree

ACACGT$

G

T

$

C

A

C
G

T

$

G

T

$

G

T

$

T

$

$

6

0

A
C

A
C

G
T

$

1 2
3

4
5

Suffix array ACACGT$
CACGT$
ACGT$
CGT$
GT$
T$
$

0
1
2
3
4
5
6

Sequence

O[m+occ*] search  time

Suffix trees (ordered tree data structure)

*occ =number of 
occurences of P in T

O[m+log n+occ*] search  time

ACACGT$
CACGT$A
ACGT$AC
CGT$ACA
GT$ACAC
T$ACACG
$ACACGT

$ACACGT
ACACGT$
ACGT$AC
CACGT$A
CGT$ACA
GT$ACAC
T$ACACG

B[i]

0
1
2
3
4
5
6

6
0
2
1
3
4
5

S(i)

sort lexicographic

T$CAACG

1. Append character (not part of alphabet)
2. Cyclic permutations
3. Sort lexicographic
4. Last column is Burrows-Wheeler transform (BWT, B[i])

Index of suffix array = F

LF(i)=C(B[i])+Occ(B[i],i)

L

1

2

1

2 1

2

1

2

Rank (A,5)=2  C(A)=1 LF=3

Last-to-first column mapping

i=5

i=5

LF=3

Burrows-Wheeler transform
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Backward search algorithm (FM index)

$ A C G T

0 1 3 5 6

BWT Matrix

1$ACACGT
ACACGT$
ACGT$AC
CACGT$A
CGT$ACA
GT$ACAC

nT$ACACG

C(c)

$ A C G T

0 0 0 0 1

1 0 0 0 1

1 0 1 0 1

1 1 1 0 1

1 2 1 0 1

1 2 2 0 1

1 2 2 1 1

Occ(c,i)  (=rank)

SP

EP

SP=1, EP=n
for i=m to 1 do

SP=C(P[i])+Occ(P[i],SP-1)+1
EP=C(P[i])+Occ(P[i],EP)
if SP>EP then return Ø

end
return (SP,EP)

O[m]

C CA
m

P=
1

FM …Full-text index in Minute space

$ACACGT
ACACGT$
ACGT$AC
CACGT$A
CGT$ACA
GT$ACAC
T$ACACG

CAC

$ACACGT
ACACGT$
ACGT$AC
CACGT$A
CGT$ACA
GT$ACAC
T$ACACG

CACi=3 i=2

SP=4

EP=5

SP=2

EP=3

$ACACGT
ACACGT$
ACGT$AC
CACGT$A
CGT$ACA
GT$ACAC
T$ACACG

CACi=1

SP=4

EP=4

- FM-index can be also used for approximate string matching (k-
mismatch search) by backtracking.

- BWT is compressible (run length encoding, move-to-front)

- In the original Bowtie implementation of the BWT-based FM-index 
for the human genome requires only 1.3 GB of memory.

Backward search algorithm for exact string matching
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A

G

A

C

A

T

G

A

T
T

T

G

A

T
T

T

A

T

A

T
G
C

A

Hash index based methods

A T T G

T T G C

T G G A

A T T G

C A A T

T G C A

G C A A

C A A T

A A T T

1,7

8

3

9

10

11

6,12

A T T G C A A T

1 11

7 11

G G A A 4

T T G G 2

G A A T 5

T P

match

no match

hash index
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

 Using k-mer seeds

 An extension step may account for errors or mismatches (spaced seeds)

Hashing

Examples

Trapnell C, Salzberg S. Nature Biotech. 2009

Maq Tophat
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Sequence alignment of 2 sequences

Genomes change over time
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Align biological sequences

Statement of the problem

Given

• 2 sequences
• Scoring system for evaluating match (or mismatch) of two 

characters
• Penalty function for gaps in sequences

Produce:

Optimal pairing of sequences that

• Retains the order of the sequences
• Introduces gaps
• Maximizes total score
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Enumeration of all possible alignments

• Number of possible alignments of 2 sequences with
length n and m

• For 2 sequences of length n

n enumeration

10 184,756

20 1.40E+11

100 9.00E+58

Dot matrix
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Biology of gaps

Gap penalties

We expect to penalize gaps - the standard cost associated 
with a gap of length g:

• Linear gap penalty function

g (g) = -g*d   

• Convex gap penalty function (more realistic)

g (g) = - d – (g-1)*e

g(g)

g(g)

g

ggap open 
penalty

gap extend 
penalty

d
e

Affine score:
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Distance scoring (DNA sequnces)

• Hamming distance:
Number of letters in which sequences differ (not valid if the
sequences have different length)

• Levenshtein distance:
w(a,a)=0
w(a,b)=1 for a≠b
w(-,a)=w(b,-)=1

For two sequences, the distance is unique, but the optimal 

alignment (the one with minimal cost or distance) is not unique

s AAT AGCAA AGCACACA

t TAA ACATA A–CACACTA

HD(s,t) 2 3 2

s AGCACAC-A

t A–CACACTA

d(s,t) 2

deletion insertion

Substitutions matrices (protein sequences)

• Unrelated or random model assumes that letter a occurs
independently with some frequency qa.

P(x,y|R) = qxiqxj

• The alternative match model of aligned pairs of residues
occurs with a joint probability pab.

P(x,y|M) =pxi yi

• Odds ratio

P(x,y|M)          pxi yi pxi yi

P(x,y|R)         qxi qyj                 qxi qyj
= = 
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Substitution matrices

• Log-odds ratio (score matrix or substitution matrix)

S = s(xi,yi)    where s(a,b) = log              for aligned pair(a,b)

s>0 … more likely than random, s<0 … less likely than random

• Physical properties of amino acids (e.g. hydrophob vs. 
hydrophil) are the reason that there are differences in the 
substitution scores

• Manually align protein structures (or, more risky, 
sequences)

• Look for frequency of amino acid substitutions at 
structurally nearly constant sites. 

pab

qa qb

PAM matrices

• Margaret Dayhoff, 1978

• Point Accepted Mutation (PAM)

– Look at patterns of substitutions in related proteins

– The new side chain must function the same way as 
the old one (“acceptance”)

– On average, 1 PAM corresponds to 1 amino acid 
change per 100 residues

– 1 PAM ~ 1% divergence

– Extrapolate to predict patterns at longer distances
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BLOSUM matrices

• Henikoff and Henikoff, 1992

• Blocks Substitution Matrix (BLOSUM n)

– Look only for differences in conserved, ungapped
regions of a protein family

– More sensitive to structural or functional substitutions

– Contribution of sequences > n% identical weighted to 1

BLOSUM62
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Summary of substitutions matrices

 Triple-PAM strategy (Altschul, 1991)

– PAM 40 short alignments, highly similar
– PAM 120 
– PAM 250 longer, weaker local alignments

 BLOSUM (Henikoff, 1993)

– BLOSUM 90 short alignments, highly similar
– BLOSUM 62 most effective in detecting known

members of a protein family (Standard in BLAST) 
– BLOSUM 30 longer, weaker local alignments

 No single matrix is the complete answer for all sequence
comparisons

Dynamic programing for sequence alignment
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Sequence alignment

• Global alignment

• Local alignment

Smith-Waterman algorithm

Needleman-Wunsch algorithm

Global alignment: Needleman-Wunsch algorithm

• Construct a matrix F(i,j) where i is index from sequence 1 
and j is the index from sequence 2

• Starting with F(0,0)=0

F(i-1,j-1)+s(xi,yj)
F(i,j)= max        F(i-1,j)-d

F(i,j-1)-d

F(i-1,j-1) F(i,j-1)

F(i-1,j) F(i,j)

s(xi,yj

)

-d

-d

gap penalty

substitution matrix
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Global sequence alignment

Example with S=BLOSUM50 and d=8

H E A G A W G H E E

0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80

P -8 -2 -9 -17 -25 -33 -42 -49 -57 -65 -73

A -16 -10 -3 -4 -12 -20 -28 -36 -44 -52 -60

W -24 -18 -11 -6 -7 -15 -5 -13 -21 -29 -37

H -32 -14 -18 -13 -8 -9 -13 -7 -3 -11 -19

E -40 -22 -8 -16 -16 -9 -12 -15 -7 3 -5

A -48 -30 -16 -3 -11 -11 -12 -12 -15 -5 2

E -56 -38 -24 -11 -6 -12 -14 -15 -12 -9 1

HEAGAWGHE-E
--P-AW-HEAE

best score

start

Time O(n*m)
Space O(n*m)

Linear space alignment

• Do calculate the score for column j only column j-1 is  needed 

H E A G A W G H E E

0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80

P -8 -2 -9 -17 -25 -33 -42 -49 -57 -65 -73

A -16 -10 -3 -4 -12 -20 -28 -36 -44 -52 -60

W -24 -18 -11 -6 -7 -15 -5 -13 -21 -29 -37

H -32 -14 -18 -13 -8 -9 -13 -7 -3 -11 -19

E -40 -22 -8 -16 -16 -9 -12 -15 -7 3 -5

A -48 -30 -16 -3 -11 -11 -12 -12 -15 -5 2

E -56 -38 -24 -11 -6 -12 -14 -15 -12 -9 1
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Local alignment: Smith-Waterman algorithm

0
F(i-1,j-1)+s(xi,yj)
F(i-1,j)-d
F(i,j-1)-d

F(i,j) = max

F(0,j) = F(i,0)=0

• Look for best alignments between subsequences

• E.g. two proteins sharing a common domain

• Algorithm is similar to global alignment

Local alignment

H E A G A W G H E E

0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 5 0 5 0 0 0 0 0

W 0 0 0 0 2 0 20 12 4 0 0

H 0 10 2 0 0 0 12 18 22 14 6

E 0 2 16 8 0 0 4 10 18 28 20

A 0 0 8 21 13 5 0 4 10 20 27

E 0 0 6 13 18 12 4 0 4 16 26

AWGHE
AW-HE

best

score

stop



54

Database search

How to answer the query

We could just scan the whole database

• But:

– Query must be very fast
– Most sequences will be completely unrelated to query
– Individual alignment needs not be perfect. Can finetune

• Exploit nature of the problem

– If you’re going to reject any match with idperc < 90%,
then why bother even looking at sequences which
don’t have a fairly long stretch of matching a.a. in a row.
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W-mer indexing

•  Preprocessing: 

For every W-mer (e.g., W=3) store every  location in the  
database where it occurs (can use hashing if W is large)

• Query:

– Generate W-mers and look them up in the database.
– Process the results

• Running time benefit:

– For W=3, if the sequences are “random”, then roughly     
one W-mer in 233 will match, i.e., one in a ten thousand

– We hit only a small fraction of all sequences

FASTA

• Use hash table of short words of the database (DB)  sequence and 
query sequence (2-6 chars)

• For words in query sequence, find similar words in DB using (fast) 
hash table lookup, and compute

R = position(query) – position (DB).

Areas of long match will show same R for many words.

• Score matching segments based on content of these matches. 
Extend the good matches empirically.
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BLAST

• Finds inexact, ungapped “seeds” using a hashing technique   
(like FASTA) and then extends the seed to maximum length  
possible.

• Based on strong statistical/significance framework “What is a 
significantly high score of two segments of length N and M?”

• Most commonly used for fast searches and alignments. New
versions now do gapped segments.

High-scoring segment pairs
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High-scoring segment pairs

• Receive query

– Split query into overlapping words of length W
– Find neighborhood words for each word until threshold T
– Look into the table where these neighbor words occur: seeds
– Extend seeds until score drops off under X

•  Evaluate statistical significance of score

•  Report scores and alignments

Significance of scores

The number of unrelated matches with score greater than S is 
approximately Poisson distributed with mean

E(S)=Kmne-λS

where λ is a scaling factor m and n are the length of the sequences

The probability that there is a match of score greater than S 
follows a extreme value distribution:

Karlin S, Altschul S. Proc Natl Acad Sci (1990)

P(x>S)=1-e-E(S)
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NCBI Blast

Program Query sequence Subject sequence

BLASTN Nucleotide Nucleotide

BLASTP Protein Protein

BLASTX Nucleotide
six-frame translation

Protein

TBLASTN Protein Nucleotide
six-frame translation

TBLASTX Nucleotide
six-frame translation

Nucleotide
six-frame translation

NCBI Blast Example
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Blast Results

…

alignment

B
es

t 
h

it description

graphical
visualization

E-value

Score (S)

conserved domain
database (CDD)

…

Multiple sequence alignment
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Often simple extension of pairwise alignment:

• Given:

– Set of sequences
– Match matrix
– Gap penalties

• Find:

– Alignment of sequences such that optimal score    
is achieved.

Multiple sequence alignment

• Determine Consensus Sequences
– Prosite, eMOTIF
– ClustalW, MACAW, Pileup, T-Coffee

• Building Gene Families
– Blocks, Prints, ProDom, pFAM, DOMO, eBLOCKs

• Develop Relationships & Phylogenies
– Clusters
– Relationships
– Evolutionary Models
– Phylip, GrowTree, MACAW, PAUP

• Model Protein Structures for Threading and Fold Prediction
– Profiles, Templates, HSSP, FSSP
– Hidden Markov Models, pFAM, SAM
– Network Models, Neural Nets, Belief Nets
– Statistical Models, Generalized Linear Models

Goals of multiple sequence alignment
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Exhaustive search using dynamic programming

Why not just use same technique as for pairwise
alignment?

• Instead of 2-dimensional SCORE matrix, use  N  
dimensional. Fill from one corner to diagonal corner in 
N dimensions.

• Complexity increases with number of sequences 
O(MN), so only N < 10 and lengths (M)~ 200 can be
accommodated.

Dynamic Programming
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Dynamic Programming

MSA Algorithm

Based on dynamic programming concept:

1. Compute optimal pairwise alignments to get
upperbound on any pair of alignments. (MA can’t do any
better than sum of optimal pairwise alignments.)

2. Create heuristic multiple alignment in ad hoc fashion
to create lowerbound on MA score (e.g. align all
sequences to the first).

3. Search N-dimensional scoring matrix (as in pairwise
case) for optimal path, where S[i,j,k…] is the best score
including ith element of sequence 1, jth of sequence 2,
kth of sequence 3, etc…
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Progressive tree alignment (ClustalW)

Predictive methods using protein sequences
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Homology

Searches

Homology searches

Sequence alignment

BLAST, FASTA

Profile

Analysis

Profile Analysis

Uses collective characteristics of a family of proteins

Position specific score matrix (PSSM)

Profile HMM

ProfileScan, Pfam, CDD, Prosite, BLOCKS

PSI-Blast



65

Profile Construction




20

1b

f(p,b) = frequency of amino acid b in position p
s(a,b) is the score of (a,b) (from, e.g., BLOSUM or PAM)

PSSM(p,a) =        f(p,b)*s(a,b)

PSI-BLAST

• Position-Specific Iterated BLAST search

• Used to identify distantly related sequences that are 
possibly missed during a standard BLAST search 

• Easy-to-use version of a profile-based search
 Perform BLAST search against protein database
 Use results to calculate a position-specific scoring 

matrix
 PSSM replaces query for next round of searches
 May be iterated until no new significant alignments 

are found

Altschul et al., Nucleic Acids Res. 25: 3389-3402, 1997
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Profile Hidden Markov Model

Main states (gray)

 Allows position dependent gap penalties
 Can be obtained from a multiple alignment (DNA or Protein)
 Can be used for searching a database for other members 

of the family

Insert states to model highly
variable regions in the alignemnt

Delete (silent, null) states

Insert states

Protein Sequence Analysis

Amino Acid Composition

Hydrophobicity

Charge

Physical

Properties
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Amino Acids 

ProtParam

• Computes physicochemical parameters

– Molecular weight
– Theoretical pI
– Amino acid composition
– Extinction coefficient

http://web.expasy.org/protparam
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Protein Sequence Analysis

Secondary structure

Specialized structures

Tertiary structure

Structural

Properties

Alpha-helix

•   Corkscrew

• Main chain forms backbone, side 
chains project out

• Hydrogen bonds between CO group 
at n and NH group at n+4

• Helix-formers: Ala, Glu, Leu, Met

• Helix-breaker: Pro
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Beta-strand

•   Extended structure (“pleated”)

• Peptide bonds point in opposite 
directions

• Side chains point in opposite 
directions

• No hydrogen bonding within strand

Beta-sheet

•   Stabilization through hydrogen 
bonding

• Parallel or antiparallel

• Variant: beta-turn
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Neuronal network for secondary structure prediction

Protein secondary structure prediction (Jpred)
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SignalP

•   Neural network trained based on phylogeny
– Gram-negative prokaryotic
– Gram-positive prokaryotic
– Eukaryotic

• Predicts secretory signal peptides
•  http://www.cbs.dtu.dk/services/SignalP/

Signal peptide score (S)

Cleavage site score (C)

Combined Score (Y)

PredictProtein

•   Multi-step predictive algorithm (Rost et al., 1994)

– Protein sequence queried against SWISS-PROT
– MaxHom used to generate iterative, profile-based

multiple sequence alignment (Sander and Schneider,1991)
– Multiple alignment fed into neural network (PHDsec)

• Accuracy: Average > 70%, Best-case > 90%

• http://www.predictprotein.org/
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Protein folding from sequence (AlphaFold2)

Jumper et al. Nature 2021

 Transcription factor binding sites

Experimental methods

Computational methods

Matrix based methods

Motif discovery

 MicroRNA target prediction

Regulatory sequences
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Transcription factor binding sites

Experimental methods

 Reporter gene assays (luciferase) 

 Electro mobility shift assays (EMSA)

 DNase I and Exonulease Footprinting

 SELEX

 Chromatin immuno precipitation (ChIP)
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Luciferase reporter assays

 Identify functional regulatory region within a sequence and delineate 
specific TFBS through mutagenesis

 Evidence that TF binding has an effect on transcription (not only binding 
to DNA)

Electromobility/Gel Shift Assays 

TF + DNA

DNA (free probe)

Supershift

M
o

ve
m

en
t 

Detection of labeled probesElectrophoretic gel separation 

TF specific antibody

+
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DNase I and Exonuclease footprinting

Neph et al., Nature, 2012

Dnase-seq
FAIRE-seq

ATACseq

Assay for Transposase-Accessible Chromatin with sequencing

CTR

TR1

TR2
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SELEX

Most position weight matrices (PWMs)  in the databases
are derived by SELEX

Systematic evolution of ligands by exponential enrichment

several cycles

Farnham, Nature  Rev Genetics, 2009

ChIP procedure
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ChIP-seq analysis

Hawkins et al., Nature Rev Genetics, 2010

ChIP-seq (Peak calling)

Pepke, Nature Methods, 2009

• CisGenome
• ERANGE
• FindPeaks
• F-Seq
• GLITR
• MACS
• PeakSeq
• QuEST
• SICER
• SiSSRs
• Spp
• Useq

Tools:
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Chromatin state and TF localization

H3K4me3

H3K4me2

H3K4me1

H3K27ac

PPARγ

H3K36me3

H3K27me3

CTCF

Mikkelsen et al., Cell, 2010

time series

Pparg

Computational methods

 Problem: sequences are short (e.g. 6-10 bp) and
degenerated, many false positives

 Matrix based methods (knowledge about TF) 
Position weight matrix (PWM), HMM

 Motif discovery
Word counting, EM

 MicroRNA target prediction
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Experimental verified binding sites

….

Position frequency matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A 10 8 4 3 11 0 1 1 2 19 15 17 2 0 0 0 16

C 3 4 11 5 1 1 2 6 15 0 1 4 1 1 2 17 2

G 3 2 4 2 7 20 19 6 1 1 2 1 17 15 1 4 1

T 6 8 3 12 3 1 0 7 4 2 4 0 2 6 19 1 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A 0.86 0.54 -0.46 -0.87 1.00 -1.32 -2.46 -2.32 -1.46 1.79 1.45 1.63 -1.46 -1.32 -1.32 -1.32 1.54

C -0.87 -0.46 1.00 -0.14 -2.46 -2.46 -1.46 0.26 1.45 -1.32 -2.46 -0.46 -2.46 -2.46 -1.46 1.63 -1.46

G -0.87 -1.46 -0.46 -1.46 0.35 1.86 1.79 0.26 -2.46 -2.46 -1.46 -2.46 1.63 1.45 -2.46 -0.46 -2.46

T 0.13 0.54 -0.87 1.13 -0.87 -2.46 -1.32 0.49 -0.46 -1.46 -0.46 -1.32 -1.46 0.13 1.79 -2.46 -0.87

• Position frequency matrix

• Position weight matrix (PWM),
position specific scoring matrix (PSSM)
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Position weight matrix (PWM)

Probability of base b at position i

p(b,i) =
fb,i + s(b)

N + ∑ s(b’)
b’ є {A,C;G,T}

PWM 

Wb,i=log2

p(b,i)

p(b)

N …  number of sites
s(b) …  pseudo counts
Fb,i …  frequency of base b 

in position i

p(b)…  background probability
of base b 

1 2 3 4 5 6

A 1.00 -1.32 -2.46 -2.32 -1.46 1.79

C -2.46 -2.46 -1.46 0.26 1.45 -1.32

G 0.35 1.86 1.79 0.26 -2.46 -2.46

T -0.87 -2.46 -1.32 0.49 -0.46 -1.46

…ACGTAGGTCATAGAGTA.. S=1+1.86+1.79+0.49+1.45+1.79=8.38

Evaluation of sequences

S= ∑ Wb,i
i=1

w w …  width of PWM
b … nucleotide in position i
S … PWM score of a sequence

…ACGTAGGTCATAGAGTA.. S=-0.87-2.46-2.46+0.49-1.46-2.46=-9.22

Optimized similarity score to minimize false predictions
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From Frequency to Sequence Logo

Information content in position i

Di = 2+ ∑p(b,i)log2p(b,i) -e(n)
b

e(n) … correction factor if only few samples n
Di … information content at position i
b     …  base A,C,G, or, T

Di=2+4*0.25*log20.25=0 bits

Di=2+1*log21+3*0.001*log20.001=1.97 bits

from pseudocounts (log20 is not defined!!)

All bases with equal probabilities at position i

Only one base is present at position i
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Using a set of background sequences

Profile hidden markov models (HMM)

Levkovitz et al. PLoS One. 2010
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Phylogenetic footprinting

 Functional regulatory sites are conserved between species

 Multiz alignment of UCSC genome browser

Phylogenetic footprinting
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Motif discovery

Word counting
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Expectation maximum

• Problem: Don’t know what the motif looks like or   
where the  starting positions are

• EM is a family of algorithms for learning probabilistic
models in problems that involve hidden state

• In our problem, the hidden state is where the motif 
starts in each training sequence

 Use expectation maximum (EM)

The element Zij of the matrix Z 
represents the probability that the 
motif starts in position j in sequence i.

A motif is represented by a matrix 
of probabilities: Pck

represents the probability of 
character c in column k

Basic EM-approach

p Z

 The basic EM approach has been enhanced by MEME (ChIP-MEME)
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MicroRNA target prediction

microRNA  biogenesis
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microRNA/mRNA pairing

1. Sequence complementarity
2. Conservation
3. Thermodynamics
4. Site accessibility
5. UTR Context
6. Anticorrelation of expression profiles

Principles of microRNA target prediction
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Sequence complementarity

Bartel, Cell,2009

Lewis BP et al., Cell, 2003

Conservation
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1. Minimum free energy

3. Extreme value distribution of MFE

2. Account for different sequence length

e
Mfold (Zuker et al.)
RNAfold (Hofacker et al.)

Thermodynamics

mfe: -25.3 kcal/mol
p-value: 0.010068

Target  5' A          UC         A 3' 
CACAG  UUG  UCUGCAGGG
GUGUU  AGC  AGAUGUCCC 

miRNA   3'       UA   CA           5'

Rehmsmeier M et al. RNA (2004)

Site accessibility

Leitner A, 2009
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 Microarrays

 RNA sequencing

 Gene expression profiling

 Clustering and classification

 Gene ontology

III Gene expression analyses

Gene expression analyes

• Northern bloting

- semi-quantitative
- few genes

• Real time RT-PCR (qPCR)

- medium throughput 
- 96/384 per run

• Microarray analysis

- high throughput 
- 10.000-500.000 elements per chip

• RNA seq

- high throughput

- deep sequencing (short reads 25bp) 



91

One color microarrays (Affymetrix)

Affymetrix chips
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Processing of Affymetrix chips

 Background modeling (PM vs. MM)
 Quantile normalization across all arrays

 Probe summarization (median polish)
 Log2-transformation (log2-intensities)

Robust Microarray Averaging (R/Bioconductor pkg. RMA) 

log2(PM)

After quantile
normalization

d
en

si
ty

0
.0

   
 0

.2
   

 0
.4

   
0

.6
   

  0
.8

   
 1

.0

4             6             8            10          12           14

Differentially expressed genes

ID GENE KO1 KO2 KO3 WT1 WT2 WT3 logFC AveExpr t P.Value adj.P.Val

10386473 Srebf1 5.72 5.58 6.06 4.91 4.88 5.09 0.83 5.33 7.66 3.7E-09 4.6E-05

10463355 Scd2 6.63 6.26 6.92 5.13 4.77 5.01 1.64 5.59 7.52 5.6E-09 4.6E-05

10548105 Ccnd2 5.56 5.48 5.49 5.05 5.11 5.02 0.45 5.23 5.21 7.3E-06 3.9E-02

10587284 Elovl5 5.81 5.67 5.97 5.05 5.06 5.35 0.66 5.44 4.87 2.1E-05 8.4E-02

10540122 Slc6a6 7.27 7.16 7.35 6.75 6.81 6.71 0.50 7.04 4.80 2.6E-05 8.5E-02

10605437 Pls3 5.50 5.63 5.41 4.88 4.93 4.87 0.62 5.20 4.63 4.3E-05 9.7E-02

10543791 Podxl 7.30 7.03 7.08 6.31 6.52 6.33 0.75 6.59 4.61 4.6E-05 9.7E-02

10356084 Irs1 8.30 8.76 7.61 6.62 7.33 7.19 1.18 7.60 4.57 5.2E-05 9.7E-02

10346164 Sdpr 5.68 5.37 5.43 5.00 5.03 4.95 0.50 5.17 4.54 5.7E-05 9.7E-02

10387625 Chrnb1 6.31 6.08 6.06 5.73 5.59 5.81 0.44 6.01 4.52 6.0E-05 9.7E-02

10407390 Ptbp1 4.84 5.26 5.07 4.22 3.98 4.64 0.77 4.88 4.43 8.0E-05 1.1E-01

10507539 Elovl1 5.08 4.58 4.89 4.33 4.34 4.55 0.44 4.61 4.40 8.7E-05 1.1E-01

10585988 Myo9a 4.05 4.00 4.01 3.50 3.64 3.79 0.38 3.93 4.39 9.1E-05 1.1E-01

10371959 Elk3 5.94 5.85 5.78 5.28 5.44 5.46 0.47 5.66 4.38 9.3E-05 1.1E-01

test

1
6

1
3

4
 p

ro
b

es
et

s

condition KO vs. condition WT
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Differentially expressed genes

Moderated t-test (R/Bioconductor package limma)

estimated from all genes

=> p-value

 At a significance level of 0.05 in the case of 10000 tests 500 
might be wrong.

 Account for this by correction for multiple hypothesis testing
 Bonferroni correction (multiply p with number of tests)
 Benjamini-Hochberg correction (based on the FDR)

 adjusted p-value<0.05 (<0.1) significantly differentially
expressed

Methods to correct p-values for multiple testing

smallest p

largest p

keep
smaller
one

..

p(i)  = min { min {p(j)*n/j },1 }
j ≥ i

BH

Ranked p Bonferroni Benjamini-Hochberg (FDR)

p(1) p(1) *n p(1) *n

p(2) 
p(2) *n p(2) *n/2

.. .. ..

p(i) p(i) *n p(i) *n/i

.. .. ..

p(n-1) p(n-1) *n p(n-1) *n/(n-1)

p(n) 
p(n) *n p(n)
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P-value distribution
1000

0

200

400

600

800

0.0      0.2       0.4      0.6     0.8      1.0
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0.0      0.2       0.4      0.6     0.8      1.0

0

200

400

600

800

0.0      0.2       0.4      0.6     0.8      1.0

Genes with FDR<0.05 in the box
only 5% of modified p-values are FP

1000 genes affected by treatment
=> measurem. come from 2 different distributions

9000 remaining genes not affected by treatment
=> measurem. come from the same distribution

1000

~450 genes with p<0.05 affected by
treatment (skewed distribution)

0.00   0.01     0.02    0.03    0.04    0.05

~450 genes with p<0.05 not affected by
treatment (uniform distribution)

+

=

Josh Starmer (StatQuest)

Deep (next generation) sequencing technologies

 Sanger (Thermo Fisher Scientific) 

 454 (Roche)
 Solexa (Illumina)
 Solid (Thermo Fisher Scientific)
 Ion Torrent (Thermo Fisher Scientific)

 HeliScope (Helicos)
 Pacific Biosciences SMRT
 Oxford Nanopore Sequencing (MinION)

3rd gen. 
(no ampl)

2nd gen. 
(ampl)

1st gen.
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Solexa (Illumina)

1. Prepare genomic DNA sample

2. Attach DNA to surface

3. Bridge amplification

4. Fragments become double 
stranded

5. Denature double stranded DNA

6. Complete amplification

1 2 3

4 5 6

Solexa (Illumina)
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Q=-10* log P

Quality of
Sequencing
(FASTQC)

Base calling (Phred score) 

Base-calling error probabilities: P

Base calling (FastQ format) 

@EAS54_6_R1_2_1_413_324
CCCTTCTTGTCTTCAGCGTTTCTCC
+
;;3;;;;;;;;;;;;7;;;;;;;88

Quality scores are 
encoded in ASCII
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Transcriptome sequencing (RNAseq)

Wang et al., Nature Rev Gen, 2009

0. Image analysis and base calling (Phred quality score)  

=> FastQ files (sequence and corresponding quality levels)

1. Trimming adaptors and low quality reads (FastQC, Trimmomatic)
2. Read mapping (Spliced alignment) (STAR)

=> SAM/BAM files

3. Transcriptome reconstruction (reference transcriptome, GTF file)

4. Expression quantification (transcript isoforms) (featureCounts)
=> raw count matrix
5.  Differential expression analysis (negative-binomial test)

(DESeq, edgeR)
=> List of genes with log2FC, p-value, FDR, average expression
6.  Normalization

Analysis steps



98

Normalization

Within-samples

 Reads per kilobase per million reads (RPKM)
 Fragments per kilobase per million (FPKM) for paired-end seq. 

 TPM (transcripts per million) (preferable)

Between-samples

 Quantile normalization (upper quantile normalization)
 TMM (trimmed mean of M values) (edgeR)
 Relative log expression (RLE) (DESeq2)

GENE S1 S2 S3

A (2kb) 10 12 30

B (4kb) 20 25 60

C (1kb) 5 8 15

D (10kb) 0 0 1

A (2kb) 2.86 2.61 2.83

B (4kb) 5.71 5.43 5.66

C (1kb) 1.43 1.96 1.42

D (10kb) 0.00 0.00 0.09

A (2kb) 1.43 1.30 1.42

B (3kb) 1.43 1.36 1.42

C (1kb) 1.43 1.96 1.42

D (10kb) 0.00 0.00 0.01

Tens(Mio) 3.5 4.5 10.6

1. Divide by millions of reads

2. Divide by gene length in kb

RPKM (FPKM)

GENE S1 S2 S3

A (2kb) 10 12 30

B (4kb) 20 25 60

C (1kb) 5 8 15

D (10kb) 0 0 1

A (2kb) 5 6 15

B (4kb) 5 6.25 15

C (1kb) 5 8 15

D (10kb) 0 0 0.1

A (2kb) 3.33 2.96 3.326

B (3kb) 3.33 3.09 3.326

C (1kb) 3.33 3.95 3.326

D (10kb) 0 0 0.02

1. Divide by gene length in kb

2. Divide by millions of RPK

TPM

Tens(Mio) 1.5 2.025 4.51

RPK
RPM

RPKM TPM
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Isoform quantification

 Uncertainy in assigning reads to isoforms
 Paired-end sequencing
 Spliced alignment
 Alternative splicing (statistical significant?)  

RNA seq quantification using pseudoalignment (kallisto)

Bray et al. Nature Biotechnology 2016

Transcriptome de Bruijn Graph (T-DBG) where
nodes (v1, v2, v3, ... ) are k-mers

Reference 
transcriptome

Reads
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Gene expression profiling

cell development cancer

patientstime points
ge

n
es

ge
n

es

Representation of gene expression

n x m matrix with n genes and m samples

 Representation as heatmap (e.g. red upregulated
genes, green down regulated genes, black no
change)

For experiments in reference design:

 log2-fold change (log2FC, log2(A/B), log2 ratio)

For patient samples and no reference:

Mean (median) centered log2-levels for each gene
log2-intensities for one-color arrays
log2-RPKM for RNAseq

 z-score of log2-levels
Z= (X-m)/s m…mean,

s…standard deviationheatmap

ge
n

es
 (

n
)

conditions (patients) (m)
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clustering algorithms (hierarchical clustering)

grayscale random order slices

Organize data

Sherlock G, Kishan M, Narisamhan S

Clustering

 Unsupervized clustering
 Hierarchichal Clustering
 K-Means Clustering 
 Principal Component Analysis (PCA)

 Supervized clustering (Classification)
 Support vector machines (SVM)
 Logistic regression
 Cross validation
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Clustering

• Agglomerative
Bottom up approach, whereby  single expression

profiles are successively joined to form nodes.

• Divisive
Top down approach, each cluster is successively   
split in the same fashion, until each cluster consists  
of one single profile.

• Pearson correlation

• Euclidian distance

• Manhattan distance

Similarity (distance) between expression profiles

1

( )
n

M i i
i

d x y


 

-1 r  1
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Hierarchical clustering

• Agglomerative (bottom up), unsupervized
• Cluster genes or samples (or both= biclustering)
• Distances are encoded in dendogram (tree)
• Cut tree to get clusters
• Pearson correlation (usually used)
• Computational intensive (correlation matrix)

1. Identify clusters (items) with closest distance
2. Join to new clusters
3. Compute distance between clusters (items) (see linkage)
4. Return to step 1

6 cluster 

15 cluster 

Linkage

 Single-linkage clustering
Minimal distance

 Complete-linkage clustering
Maximal distance

 Average-linkage clustering
Calculated using average distance (UPGMA)
Average from distances not! expression values
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• partition n genes into k clusters, where k has to be  
predetermined

• k-means clustering minimizes  the variability within 
and maximize between clusters

• Moderate memory and time consumption

K-means

1. Generate random points (“cluster centers”) in n  
dimensions (results are depending on these seeds).

2.Compute distance of each data point to each of the 
cluster centers.

3.Assign each data point to the closest cluster center.

4.Compute new cluster center position as average of 
points assigned.

5.Loop to (2), stop when cluster centers do not move 
very much.

How to choose k

Figure of Merit (FOM)

choose k here (e.g. k=8)
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Principal Component Analysis (PCA)

Description Gene Expression Point in PC Space 
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Is it possible to represent each profile by overlay of few patterns?    

PC3

PC2

Principal component analysis (PCA)

PCA is a data reduction technique that allows to simplify multidimensional data sets 
into smaller number of dimensions (r<n).

Variables are summarized by a linear combination to the principal components. The 
origin of coordinate system is centered to the center of the data (mean centering) . 
The coordinate system is then rotated to a maximum of the variance in the first axis.

Subsequent principal components are orthogonal to the 1st PC. With the first 2 PCs 
usually  80-90% of the variance can already be explained.

This analysis can be done by a special matrix decomposition (singular value 
decomposition SVD).
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Singular value decomposition (SVD)

X = USVT with UUT = VTV =  VVT = I

For mean centered data the Covariance matrix C can be calculated by XXT. U are 
eigenvectors of XXT and the eigenvalues are in the diagonal of S defined by the 
characteristic equation |C – λI | = 0.

Transformation of the input vectors into the principal component space can be 
described by Y = XU where the projection of sample i along the axis is defined by the 
j-th PC:

Classification

ER+ ER-

Gene 1

G
e

n
e

 2

New
patient

Gene 1

G
e

n
e

 2

Classifier

learn

ER+

Known
groups

(score>cutoff)

? classify



107

Logistic regression

ln (P/(1-P))=b0+b1*x1+b2*x2+…

1

0

x1

y

 Binary outcome (y)

 With logit transformation analog to linear regression

Support vector machines (SVM)
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Receiver operator characteristics (ROC)

FPR (1-SP)
T

P
R

 (
S

N
)

Sensitivity
SN=TP/(TP+FN)

Specificty
SN=TN/(TN+FP)

AUC

Area under curve (AUC)
AUC=1.0 optimal
AUC=0.5 random

0.0              0.5             1.0

1.0

0.0

0.5

different cutoffs

worse

better

Classified
(> cutoff)

Truely

ER+   TP      FP

ER+ ER-

ER- FN     TN

Tr

Cl

TP
FN

FP
TN

+

+
-

-

Holdback cross validation

To avoid overfitting data should be splitted into training and test set

training set test set

classifier

classification data

2/3 1/3

training

classification

ROC

random splitting
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K-fold cross validation

set 1

training

classification data

set i k sets except set i

random splitting

1 p

1 p/k

set 2

1 p/k

set k

1 p/k
….

training/test set formation

classifier

training

repeat k times

1 (k-1)p/k

classification

ROC

1 p/k

Biological meaning of the gene sets

?

 Guilt-by-association

 Regulation by the same transcription factor

 Gene ontology terms

 Over representation analysis

 Pathways
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Gene Ontology

Gene Ontology (GO)

The three organizing principles (categories) of GO are 

 cellular component 

 biological process 

 molecular function

The Gene Ontology project (http://geneontology.org) provides 
a controlled vocabulary to describe gene and gene product 
attributes in any organism. 

mitochondrium

cell cycle

isomerase activity
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 Term
transcription initiation

 ID
GO:0006352

 Definition
Processes involved in starting transcription, where 
transcription is the synthesis of RNA by RNA 
polymerases using a DNA template. 

What’s in a GO term?

Parent /child relation in directed acyclic graph (DAG)

2 relations:
part_of

is_a

different levels

more specific

less specific

biological_process
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Gene Ontology Browser (Amigo2)

http://amigo2.geneontology.org (http://geneontology.org/)

Inferred tree view

Term information Annotation

...

ISS Inferred from Sequence Similarity

IEP Inferred from Expression Pattern

IMP Inferred from Mutant Phenotype

IGI Inferred from Genetic Interaction

IPI Inferred from Physical Interaction

IDA Inferred from Direct Assay

RCA Inferred from Reviewed Computational Analysis

TAS Traceable Author Statement

NAS Non-traceable Author Statement

IC Inferred by Curator

ND No biological Data available

Evidence code for GO annotations 
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Case study: fat cell differentiation

Microarray
analysis

Biological 
function of

genes in 
clusters

GO Analysis

Time series
0h-ref

+6h-ref
+12h-ref

…
+14d-ref

Reference (proliferating cells)

Heatmap (k-means clustering)

730 genes

Hackl H, Burkard TR et al. Genome Biol. 2005

cell cycle (17)
mitosis (14)
cytokineses (13)

nucleus (30)

 3T3-L1 cell line undergoes ≥ 1 cell cycle before terminal adipocyte 
differentiation around 1 day after induction (clonal expansion)

GO terms for gene sets

Are results just by chance?
Over representation analysis

cluster 5
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Over representation analysis

m

g

gene universe 
(whole microarray)

GO term

c
i

genes in cluster
(gene list)

all genes with GO term

genes in cluster
with GO term

m-g   c-i

g         i

contingency table

Over representation analysis

 Fisher exact test for contingency table 

 Hypergeometric distribution

 Multiple hypothesis testing => adjust p-value        

 Not only for GO Terms also for TFBS, pathways,..

p =

50
10

1000-50
30-10 

1000
30

m-g  c-i

g      i

50 red
balls of
1000
balls

20x

draw 30x

10x

c=30 genes

m=1000
genes

g=50 genes (GO) i=20 genes (GO)



115

DAVID

 Database for Annotation, Visualization and Integrated Discovery
 https://david.ncifcrf.gov
 Functional annotation tool (over representation analysis)

Dnajb1

Wnt11

Sorbs3

D230025D16Rik

Sfxn3

Hspa5

Golga3

Hgs

Npc1

Mta2

Cnn2

Spg20

Zpr1

…
…

1019 mouse
gene symbols


